【题目】已知a>0,a≠1,设p:函数y=loga(x+1)在(0,+∞)上单调递减;q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点.如果p且q为假命题,p或q为真命题,求a的取值范围.
【答案】解:若p为真,则0<a<1.若q为真,
则△>0即(2a﹣3)2﹣4>0解得a< 或a> .
∵p且q为假,p或q为真,
∴p与q中有且只有一个为真命题.(a>0且a≠1)
若p真q假,则
∴ ≤a<1
若p假q真,则
∴a
综上所述,a的取值范围为:[ ,1)∪( ,+∞)
【解析】根据对数函数的单调性我们易判断出命题p为真命题时参数a的取值范围,及命题p为假命题时参数a的取值范围;根据二次函数零点个数的确定方法,我们易判断出命题q为真命题时参数a的取值范围,及命题q为假命题时参数a的取值范围;由p且q为假命题,p或q为真命题,我们易得到p与q一真一假,分类讨论,分别构造关于x的不等式组,解不等式组即可得到答案.
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真,以及对二次函数的性质的理解,了解当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,A(2,4),B(﹣1,2),C,D为动点,
(1)若C(3,1),求平行四边形ABCD的两条对角线的长度
(2)若C(a,b),且 ,求 取得最小值时a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax3+3x2﹣x+1,a∈R.
(1)当a=﹣3时,求证:f(x)=在R上是减函数;
(2)如果对x∈R不等式f′(x)≤4x恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数的导函数的图像与直线平行,且在处取得极小值.设.
(1)若曲线上的点到点的距离的最小值为,求的值;
(2)如何取值时,函数存在零点,并求出零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的左右焦点分别为F1 , F2 , 点P为椭圆C上的任意一点,若以F1 , F2 , P三点为顶点的三角形一定不可能为等腰钝角三角形,则椭圆C的离心率的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=(x2﹣2ax)ebx , x为自变量.
(1)函数f(x)分别在x=﹣1和x=1处取得极小值和极大值,求a,b.
(2)若a≥0且b=1,f(x)在[﹣1,1]上是单调函数,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在以下关于向量的命题中,不正确的是( )
A.若向量 ,向量 (xy≠0),则
B.若四边形ABCD为菱形,则
C.点G是△ABC的重心,则
D.△ABC中, 和 的夹角等于A
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复数z=(a2﹣7a+6)+(a2﹣5a﹣6)i(a∈R)
(1)若复数z为纯虚数,求实数a的值;
(2)若复数z在复平面内的对应点在第四象限,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com