精英家教网 > 高中数学 > 题目详情
4.设M是焦距为2的椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直线MA与MB的斜率分别为k1,k2,且k1k2=-$\frac{1}{2}$.
(1)求椭圆E的方程;
(2)已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上点N(x0,y0)处切线方程为$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1,若P是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标.

分析 (1)设A(-a,0),B(a,0),M(m,n),代入椭圆方程,运用直线的斜率公式,化简整理,注意整体代入,解方程即可求得a,b,进而得到椭圆方程;
(2)设点P(2,t),切点C(x1,y1),D(x2,y2),运用椭圆上一点的切线方程,再代入P点,可得直线CD的方程,再令y=0,即可得到定点.

解答 (1)解:设A(-a,0),B(a,0),M(m,n),则$\frac{{m}^{2}}{{a}^{2}}$+$\frac{{n}^{2}}{{b}^{2}}$=1,
即n2=b2•$\frac{{a}^{2}-{m}^{2}}{{a}^{2}}$,
由k1k2=-$\frac{1}{2}$,即$\frac{n}{m+a}$•$\frac{n}{m-a}$=-$\frac{1}{2}$,
即有$\frac{{n}^{2}}{{m}^{2}-{a}^{2}}$=-$\frac{1}{2}$,
即为a2=2b2,又c2=a2-b2=1,
解得a2=2,b2=1.
即有椭圆E的方程为$\frac{{x}^{2}}{2}$+y2=1;
(2)证明:设点P(2,t),切点C(x1,y1),D(x2,y2),
则两切线方程PC,PD分别为:$\frac{{x}_{1}x}{2}$+y1y=1,$\frac{{x}_{2}x}{2}$+y2y=1,
由于P点在切线PC,PD上,故P(2,t)满足$\frac{{x}_{1}x}{2}$+y1y=1,$\frac{{x}_{2}x}{2}$+y2y=1,
得:x1+y1t=1,x2+y2t=1,
故C(x1,y1),D(x2,y2)均满足方程x+ty=1,
即x+ty=1为CD的直线方程.
令y=0,则x=1,
故CD过定点(1,0).

点评 本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知曲线y=aln(x+1)-e-x+b(a,b∈R)在点(0,3)处的切线与直线x+3y-2=0垂直,则a的值为2.(注:(ln(x+1))′=$\frac{1}{x+1}$)

查看答案和解析>>

同步练习册答案