【题目】已知正数数列{an}的前n项和为Sn,满足
,
.
(1)求数列{an}的通项公式;
(2)设
,若
是递增数列,求实数a的取值范围.
【答案】(1)an=n;(2)(-1,+∞).
【解析】
(1)由 an2=Sn+Sn﹣1(n≥2),可得an﹣12=Sn﹣1+Sn﹣2 (n≥3).两式相减可得 an﹣an﹣1=1,再由a1=1,可得{an}通项公式.(2)根据{an}通项公式化简bn和bn+1,由题意得bn+1﹣bn>0恒成立,分离变量即可得a的范围.
解:(1)
,
=Sn-1+Sn-2,(n≥3).
相减可得:
,∵an>0,an-1>0,∴an-an-1=1,(n≥3).
n=2时,
=a1+a2+a1,∴
=2+a2,a2>0,∴a2=2.因此n=2时,an-an-1=1成立.
∴数列{an}是等差数列,公差为1.∴an=1+n-1=n.
(2)
=(n-1)2+a(n-1),
∵{bn}是递增数列,∴bn+1-bn=n2+an-(n-1)2-a(n-1)=2n+a-1>0,
即a>1-2n恒成立,∴a>-1.
∴实数a的取值范围是(-1,+∞).
科目:高中数学 来源: 题型:
【题目】某城市随机抽取一年(365天)内100天的空气质量指数
的监测数据,结果统计如下:
![]()
记某企业每天由空气污染造成的经济损失
(单位:元),空气质量指数
为
.当
时,企业没有造成经济损失;当
对企业造成经济损失成直线模型(当
时造成的经济损失为
,当
时,造成的经济损失
;当
时造成的经济损失为2000元;
(1)试写出
的表达式:
(2)在本年内随机抽取一天,试估计该天经济损失超过350元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有12天为重度污染,完成下面
列联表,并判断能否有
的把握认为该市本年空气重度污染与供暖有关?
![]()
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)若关于
的不等式
在
上恒成立,求
的取值范围;
(Ⅱ)设函数
,在(Ⅰ)的条件下,试判断
在
上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,直线
的参数方程为
,(
为参数).以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出直线
的极坐标方程与曲线
的直角坐标方程;
(2)已知与直线
平行的直线
过点
,且与曲线
交于
两点,试求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【题目】已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】西北某省会城市计划新修一座城市运动公园,设计平面如图所示:其为五边形
,其中三角形区域
为球类活动场所;四边形
为文艺活动场所,
,为运动小道(不考虑宽度)
,
,
千米.
![]()
(1)求小道
的长度;
(2)求球类活动场所
的面积最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南
镇2009~2018年梅雨季节的降雨量(单位:
)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:
![]()
“梅实初黄暮雨深”.请用样本平均数估计
镇明年梅雨季节的降雨量;
“江南梅雨无限愁”.
镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅2009~2018年的亩产量(
/亩)与降雨量的发生频数(年)如
列联表所示(部分数据缺失).请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?
(完善列联表,并说明理由).
亩产量\降雨量 |
|
| 合计 |
<600 | 2 | ||
| 1 | ||
合计 | 10 |
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.703 |
(参考公式:
,其中
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的三个顶点
,
,
,其外接圆为
.对于线段
上的任意一点
,
若在以
为圆心的圆上都存在不同的两点
,使得点
是线段
的中点,则
的半径
的取值范围__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com