精英家教网 > 高中数学 > 题目详情
2.已知复数z=(m2-3m)+(m2-m-6)i所对应的点分别在(1)虚轴上;(2)第三象限.试求以上实数m的值或取值范围.

分析 (1)由实部等于0且虚部不为0求得m值;
(2)由实部和虚部都小于0联立不等式组得答案.

解答 解:(1)由$\left\{\begin{array}{l}{{m}^{2}-3m=0}\\{{m}^{2}-m-6≠0}\end{array}\right.$,得m=0.
∴当m=0时,复数z在虚轴上;
(2)由$\left\{\begin{array}{l}{{m}^{2}-3m<0}\\{{m}^{2}-m-6<0}\end{array}\right.$,解得0<m<3.
∴当复数z对应的点在第三象限时,0<m<3.

点评 本题考查复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求下列关于x的不等式的解集:
(1)-x2+7x>6;          
(2)x2-x-a(a-1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$y={log_2}({x^2}-2x+17)$的值域为[m,+∞),当正数a,b满足$\frac{2}{3a+b}+\frac{1}{a+2b}=m$时,则7a+4b的最小值为(  )
A.$\frac{9}{4}$B.5C.$\frac{{5+2\sqrt{2}}}{4}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校高一年级举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).

(1)求样本容量n和频率分布直方图中的x,y的值;
(2)估计本次竞赛学生成绩的中位数和平均分;
(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若向量$\overrightarrow a$与$\overrightarrow a+2\overrightarrow b$的数量积为6,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1$,则向量$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线x=my+1过抛物线C:y2=2px(p>0)的焦点F且与抛物线相交于两点M(x1,y1),N(x2,y2),自M,N向准线L作垂线,垂足分别为M1,N1
(Ⅰ)求抛物线C的方程;
(Ⅱ)证明:无论m取何实数时,y1y2,x1x2都是定值;
(Ⅲ)记△FMM1,△FM1N1,△FNN1的面积分别为S1,S2,S3,试判断$S_2^2=4{S_1}{S_3}$是否成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知扇形AOB的周长为8.
(1)若这个扇形的面积为3,求其圆心角的大小;
(2)求该扇形的面积取得最大时,圆心角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t).下表是某日各时的浪高数据:
t(小时)03691215182124
y(米)1.51.00.51.01.510.50.991.5
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b的图象.根据以上数据,你认为一日(持续24小时)内,该海滨浴场的海浪高度超过1.25米的时间为(  )
A.10小时B.8小时C.6小时D.4小时

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,∠A=90°,AB=2,AC=3,设P,Q满足$\overline{AP}$=λ$\overline{AB}$,$\overline{AQ}$=(1-λ)$\overline{AC}$,λ∈R,若$\overrightarrow{BQ}$•$\overrightarrow{CP}$=1,则λ=$\frac{9}{5}$.

查看答案和解析>>

同步练习册答案