精英家教网 > 高中数学 > 题目详情

已知函数f(x)是指数函数,且f(数学公式)=数学公式,则f(3)=________.

125
分析:根据指数函数的解析式先设出函数的解析式,再代入f=利用指数的运算性质进行化简求出a,最后把x=3代入求值.
解答:由题意设f(x)=ax(a>0,且a≠1),由f=,得==
∴a=5,则f(x)=5x,即f(3)=53=125.
故答案为:125.
点评:本题考查了代入法函数的解析式以及求函数值,关键是利用指数的运算性质对式子进行化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+2x-6有一个零点在开区间(2,3)内,用二分法求零点时,要使精确度达到0.001,则至少需要操作(一次操作是指取中点并判断中点对应的函数值的符号)的次数为(  )
A、8B、9C、10D、11

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:f′(x)-
f(x2)-f(x1)
x2-x1
=0
在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得f′(x0)=
f(b)-f(a)
b-a
.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,
b-a
b
<ln
b
a
b-a
a
(可不用证明函数的连续性和可导性).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=mx3+nx2(m、n∈R,m≠0)的图象在(2,f(2))处的切线与x轴平行.
(1)求n,m的关系式并求f(x)的单调减区间;
(2)证明:对任意实数0<x1<x2<1,关于x的方程:数学公式在(x1,x2)恒有实数解
(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得数学公式.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:
当0<a<b时,数学公式(可不用证明函数的连续性和可导性).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=lnx+2x-6有一个零点在开区间(2,3)内,用二分法求零点时,要使精确度达到0.001,则至少需要操作(一次操作是指取中点并判断中点对应的函数值的符号)的次数为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省荆州中学高一(上)期中数学试卷(文科)(解析版) 题型:选择题

已知函数f(x)=lnx+2x-6有一个零点在开区间(2,3)内,用二分法求零点时,要使精确度达到0.001,则至少需要操作(一次操作是指取中点并判断中点对应的函数值的符号)的次数为( )
A.8
B.9
C.10
D.11

查看答案和解析>>

同步练习册答案