ÒÑÖªº¯Êýf£¨x£©=mx3+nx2£¨m¡¢n¡ÊR£¬m¡Ù0£©µÄͼÏóÔÚ£¨2£¬f£¨2£©£©´¦µÄÇÐÏßÓëxÖáƽÐУ®
£¨1£©Çón£¬mµÄ¹Øϵʽ²¢Çóf£¨x£©µÄµ¥µ÷¼õÇø¼ä£»
£¨2£©Ö¤Ã÷£º¶ÔÈÎÒâʵÊý0£¼x1£¼x2£¼1£¬¹ØÓÚxµÄ·½³Ì£ºÊýѧ¹«Ê½ÔÚ£¨x1£¬x2£©ºãÓÐʵÊý½â
£¨3£©½áºÏ£¨2£©µÄ½áÂÛ£¬ÆäʵÎÒÃÇÓÐÀ­¸ñÀÊÈÕÖÐÖµ¶¨Àí£ºÈôº¯Êýf£¨x£©ÊÇÔÚ±ÕÇø¼ä[a£¬b]ÉÏÁ¬Ðø²»¶ÏµÄº¯Êý£¬ÇÒÔÚÇø¼ä£¨a£¬b£©ÄÚµ¼Êý¶¼´æÔÚ£¬ÔòÔÚ£¨a£¬b£©ÄÚÖÁÉÙ´æÔÚÒ»µãx0£¬Ê¹µÃÊýѧ¹«Ê½£®ÈçÎÒÃÇËùѧ¹ýµÄÖ¸¡¢¶ÔÊýº¯Êý£¬Õý¡¢ÓàÏÒº¯ÊýµÈ¶¼·ûºÏÀ­¸ñÀÊÈÕÖÐÖµ¶¨ÀíÌõ¼þ£®ÊÔÓÃÀ­¸ñÀÊÈÕÖÐÖµ¶¨ÀíÖ¤Ã÷£º
µ±0£¼a£¼bʱ£¬Êýѧ¹«Ê½£¨¿É²»ÓÃÖ¤Ã÷º¯ÊýµÄÁ¬ÐøÐԺͿɵ¼ÐÔ£©£®

½â£º£¨1£©ÒòΪf'£¨x£©=3mx2+2nx£¬------£¨1·Ö£©
ÓÉÒÑÖªÓÐf'£¨2£©=0£¬ËùÒÔ3m+n=0¼´n=-3m------£¨2·Ö£©
¼´f'£¨x£©=3mx2-6mx£¬ÓÉf'£¨x£©£¾0Öªmx£¨x-2£©£¾0£®
µ±m£¾0ʱµÃx£¼0»òx£¾2£¬f£¨x£©µÄ¼õÇø¼äΪ£¨0£¬2£©£»-----£¨3·Ö£©
µ±m£¼0ʱµÃ£º0£¼x£¼2£¬f£¨x£©µÄ¼õÇø¼äΪ£¨-¡Þ£¬0£©ºÍ£¨2£¬+¡Þ£©£»-----£¨4·Ö£©
×ÛÉÏËùÊö£ºµ±m£¾0ʱ£¬f£¨x£©µÄ¼õÇø¼äΪ£¨0£¬2£©£»
µ±m£¼0ʱ£¬f£¨x£©µÄ¼õÇø¼äΪ£¨-¡Þ£¬0£©ºÍ£¨2£¬+¡Þ£©£»-----£¨5·Ö£©
£¨2£©¡ß=m£¨x12+x22+x1x2-3x1-3x2£©£¬------------£¨6·Ö£©
¡à£¬
¿É»¯Îª3x2-6x-x12-x22-x1x2+3x1+3x2=0£¬Áîh£¨x£©=3x2-6x-x12-x22-x1x2+3x1+3x2-------£¨7·Ö£©
Ôòh£¨x1£©=£¨x1-x2£©£¨2x1+x2-3£©£¬h£¨x2£©=£¨x2-x1£©£¨x1+2x2-3£©£¬
¼´h£¨x1£©h£¨x2£©=-£¨x1-x2£©2£¨2x1+x2-3£©£¨x1+2x2-3£©ÓÖÒòΪ0£¼x1£¼x2£¼1£¬ËùÒÔ£¨2x1+x2-3£©£¼0£¬£¨x1+2x2-3£©£¼0£¬¼´h£¨x1£©h£¨x2£©£¼0£¬-----------£¨8·Ö£©
¹Êh£¨x£©=0ÔÚÇø¼ä£¨x1£¬x2£©ÄÚ±ØÓн⣬
¼´¹ØÓÚxµÄ·½³ÌÔÚ£¨x1£¬x2£©ºãÓÐʵÊý½â-----£¨9·Ö£©
£¨3£©Áîg£¨x£©=lnx£¬x¡Ê£¨a£¬b£©£¬-----------£¨10·Ö£©
Ôòg£¨x£©·ûºÏÀ­¸ñÀÊÈÕÖÐÖµ¶¨ÀíµÄÌõ¼þ£¬¼´´æÔÚx0¡Ê£¨a£¬b£©£¬
ʹ-----------£¨11·Ö£©
ÒòΪg¡ä£¨x£©=£¬ÓÉx¡Ê£¨a£¬b£©£¬0£¼a£¼b¿ÉÖªg¡ä£¨x£©¡Ê£¨£©£¬b-a£¾0-----£¨12·Ö£©
¼´£¬
¡à-----£¨14·Ö£©
·ÖÎö£º£¨1£©ÏȶԺ¯Êýf£¨x£©½øÐÐÇóµ¼£¬ÓÖ¸ù¾Ýf'£¨2£©=0¿ÉµÃµ½¹ØÓÚmµÄ´úÊýʽ£®ÔÙ½«mµÄ´úÊýʽn´úÈ뺯Êýf£¨x£©ÖÐÏûÈ¥n£¬¿ÉµÃf'£¨x£©=3mx2-6mx£¬µ±f'£¨x£©£¾0ʱxµÄÈ¡ÖµÇø¼äΪËùÇó£®
£¨2£©ÓÉÓÚ=m£¨x12+x22+x1x2-3x1-3x2£©´Ó¶ø£¬¿É»¯Îª3x2-6x-x12-x22-x1x2+3x1+3x2=0£¬Áîh£¨x£©=3x2-6x-x12-x22-x1x2+3x1+3x2£¬¼ÆËãÔòh£¨x1£©h£¨x2£©£¼0£¬¸ù¾ÝÁãµã´æÔÚ¶¨ÀíµÃh£¨x£©=0ÔÚÇø¼ä£¨x1£¬x2£©ÄÚ±ØÓн⣬´Ó¶øµÃµ½Ö¤Ã÷£»
£¨3£©Áîg£¨x£©=lnx£¬x¡Ê£¨a£¬b£©£¬Ôòg£¨x£©·ûºÏÀ­¸ñÀÊÈÕÖÐÖµ¶¨ÀíµÄÌõ¼þ£¬¼´´æÔÚx0¡Ê£¨a£¬b£©£¬Ê¹£¬ÓÉÓÚº¯Êýg¡ä£¨x£©=µÄÐÔÖʼ´¿ÉÖ¤µÃ½á¹û£®
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éµ¼ÊýµÄÔËËã¡¢ÀûÓõ¼ÊýÑо¿ÇúÏßÉÏijµãÇÐÏß·½³Ì¡¢²»µÈʽµÄ½â·¨\À­¸ñÀÊÈÕÖÐÖµ¶¨ÀíµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룮ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=m•2x+tµÄͼÏó¾­¹ýµãA£¨1£¬1£©¡¢B£¨2£¬3£©¼°C£¨n£¬Sn£©£¬SnΪÊýÁÐ{an}µÄÇ°nÏîºÍ£¬n¡ÊN*£®
£¨1£©ÇóSn¼°an£»
£¨2£©ÈôÊýÁÐ{cn}Âú×ãcn=6nan-n£¬ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=m£¨x+
1
x
£©µÄͼÏóÓëh£¨x£©=£¨x+
1
x
£©+2µÄͼÏó¹ØÓÚµãA£¨0£¬1£©¶Ô³Æ£®
£¨1£©ÇómµÄÖµ£»
£¨2£©Èôg£¨x£©=f£¨x£©+
a
4x
ÔÚ£¨0£¬2]ÉÏÊǼõº¯Êý£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
m
n
£¬ÆäÖÐ
m
=(sin¦Øx+cos¦Øx£¬
3
cos¦Øx)
£¬
n
=£¨cos¦Øx-sin¦Øx£¬2sin¦Øx£©£¬ÆäÖЦأ¾0£¬Èôf£¨x£©ÏàÁÚÁ½¶Ô³ÆÖá¼äµÄ¾àÀ벻СÓÚ
¦Ð
2
£®
£¨¢ñ£©Çó¦ØµÄÈ¡Öµ·¶Î§£»
£¨¢ò£©ÔÚ¡÷ABCÖУ¬a£¬b£¬c·Ö±ðÊǽÇA£¬B£¬CµÄ¶Ô±ß£¬a=
3
£¬b+c=3£¬µ±¦Ø×î´óʱ£¬f£¨A£©=1£¬Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÔÏÂÁ½ÌâÈÎÑ¡Ò»Ì⣺£¨ÈôÁ½Ìⶼ×÷£¬°´µÚÒ»ÌâÆÀ·Ö£©
£¨Ò»£©£ºÔÚ¼«×ø±êϵÖУ¬Ô²¦Ñ=2cos¦ÈµÄÔ²Ðĵ½Ö±ÏߦÈ=
¦Ð
3
£¨¦Ñ¡ÊR£©µÄ¾àÀë
3
2
3
2
£»
£¨¶þ£©£ºÒÑÖªº¯Êýf£¨x£©=m-|x-2|£¬m¡ÊR£¬µ±²»µÈʽf£¨x+2£©¡Ý0µÄ½â¼¯Îª[-2£¬2]ʱ£¬ÊµÊýmµÄֵΪ
2
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=m-|x-2|£¬m¡ÊR£¬ÇÒf£¨x+2£©¡Ý0µÄ½â¼¯Îª[-1£¬1]£®
£¨1£©ÇómµÄÖµ£»
£¨2£©Èôa£¬b£¬c¡ÊR+£¬ÇÒ
1
a
+
1
2b
+
1
3c
=m£¬ÇóZ=a+2b+3cµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸