精英家教网 > 高中数学 > 题目详情
已知函数f(x)=m•2x+t的图象经过点A(1,1)、B(2,3)及C(n,Sn),Sn为数列{an}的前n项和,n∈N*
(1)求Sn及an
(2)若数列{cn}满足cn=6nan-n,求数列{cn}的前n项和Tn
分析:(1)将点A(1,1)、B(2,3)代入函数解析式,得到关于m,t的方程解出参数的值,求得函数的解析式,再将点C(n,Sn),得到Sn=2n-1(n∈N*).再有n≥2时,an=Sn-Sn-1求an
(2)由题意cn=6nan-n,求得数列{cn}的通项公式,由其形式得到,需要先分组,再对其中的一组用错位相减法求和.另一组用公式求和.两者相加求得数列{cn}的前n项和Tn
解答:解:(1)由
2m+t=1
4m+t=3
,得
m=1
t=-1

∴f(x)=2x-1,∴Sn=2n-1(n∈N*).
∴当n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1
当n=1时,S1=a1=1符合上式.
∴an=2n-1(n∈N*).
(2)由(1)知cn=6nan-n=3n×2n-n.
从而Tn=3(1×2+2×22+…+n×2n)-(1+2+…+n)
令M=1×2+2×22+…+n×2n
则2M=1×22+2×23+…+(n-1)×2n+n×2n+1
作差整理得M=(n-1)•2n+1
所以Tn=3(n-1)•2n+1-
n(n+1)
2
+6.
点评:本题考查数列与函数的综合,正确解答本题,关键是根据函数的由题意求出函数的解析式,以及观察数列{cn}的通项公式的形式,用分组技巧与错位相减法的技巧求和,本题综合性强,对观察能力,转化能力要求较高,是一个能力型题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=m(x+
1
x
)的图象与h(x)=(x+
1
x
)+2的图象关于点A(0,1)对称.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相邻两对称轴间的距离不小于
π
2

(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,a=
3
,b+c=3,当ω最大时,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下两题任选一题:(若两题都作,按第一题评分)
(一):在极坐标系中,圆ρ=2cosθ的圆心到直线θ=
π
3
(ρ∈R)的距离
3
2
3
2

(二):已知函数f(x)=m-|x-2|,m∈R,当不等式f(x+2)≥0的解集为[-2,2]时,实数m的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步练习册答案