| A. | -1 | B. | $\frac{2}{3}$ | C. | -$\frac{2}{3}$ | D. | 1 |
分析 根据奇函数的性质:f(-x)=-f(x)列出方程,利用对数的运算性质化简后求出a的值.
解答 解:∵函数f(x)=lg($\frac{2}{1-x}$+a)是奇函数,
∴f(-x)=-f(x),
则log($\frac{2}{1+x}+a$)=-lg($\frac{2}{1-x}$+a)=$lg\frac{1-x}{2+a-ax}$,
∴$\frac{2}{1+x}+a$=$\frac{1-x}{2+a-ax}$,化简得(a+1)(a-1)x2=(a+1)(a+3),
则当a=-1时上式恒成立,
故选:A.
点评 本题考查了奇函数的性质,以及对数的运算性质的应用,考查了化简、变形能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 20 | C. | 30 | D. | 40 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=sin({2x-\frac{π}{4}})+1$ | B. | y=2cos2x | C. | y=2sin2x | D. | y=cosx |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{8\sqrt{3}}}{3}$ | B. | $\frac{{4\sqrt{3}}}{3}$ | C. | $2\sqrt{3}$ | D. | $2\sqrt{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com