精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=ax3+x+1的图象在点(1,f(1))的处的切线过点(2,11),则 a=(  )
A.$\frac{3}{2}$B.$\frac{5}{4}$C.1D.2

分析 求出函数的导数,利用切线的方程经过的点求解即可.

解答 解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,
切线方程为:y-a-2=(3a+1)(x-1),
因为切线方程经过(2,11),
所以11-a-2=(3a+1)(2-1),
解得a=2.
故选:D.

点评 本题考查函数的导数的应用,切线方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知$sinα=\frac{{\sqrt{5}}}{5}$且α是锐角,tanβ=-3,且β为钝角,则α+β的值为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知(2x-1)2015=a0+a1x+a2x2+…+a2015x2015(x∈R),则a1+a2+a3+…+a2015=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知一个多面体的内切球的半径为3,多面体的表面积为15,则此多面体的体积为(  )
A.45B.15C.D.15π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.
(1)若$\overrightarrow{AF}=2\overrightarrow{FB}$,求直线AB的斜率;
(2)求△OAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(3,m)在抛物线E上,且|AF|=4.
(Ⅰ)求抛物线E的方程;
(Ⅱ)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题P:“A=30°”是命题Q:“sinA=$\frac{1}{2}$”的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数y=f(x)满足f(x+2)=f(x),且x∈[-1,1]时,$f(x)=cos\frac{πx}{2}$,函数$g(x)=\left\{\begin{array}{l}lgx,x>0\\-\frac{1}{x},x<0\end{array}\right.$,则函数h(x)=f(x)-g(x)在区间[-5,5]内零点的个数是(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.A,B两地相距300km,汽车从A地以vkm/h的速度匀速行驶到B地(速度不得超过60km/h).已知汽车每小时的运输成本由固定成本和可变成本组成,固定成本为250元,可变成本(单位:元)与速度v的立方成正比,比例系数$\frac{1}{1000}$,设全程的运输成本为y元.
(1)求y关于v的函数关系;
(2)为使全程运输成本最小,汽车应以多大速度行驶?

查看答案和解析>>

同步练习册答案