分析 (1)对f(x)的值进行讨论,迭代;
(2)分段求出F(x)的解析式,作出图象,得出最小值.
解答
解:(1)当x2-1≥0,即x≤-1,或x≥1时,g[f(x)]=x2-1-1=x2-2,
当x2-1<0,即-1<x<1时,g[f(x)]=2-(x2-1)=-x2+3.
∴g[f(x)]=$\left\{\begin{array}{l}{{x}^{2}-2,x≤-1或x≥1}\\{-{x}^{2}+3,-1<x<1}\end{array}\right.$.
(2)令h(x)=f(x)-g(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x≥0}\\{{x}^{2}+x-3,x<0}\end{array}\right.$,
当x≥0时,令x2-x≥0,解得x≥1,令x2-x<0,解得0<x<1.
当x<0时,令x2+x-3≥0,解得x≤$\frac{-1-\sqrt{13}}{2}$,令x2+x-3<0,解得$\frac{-1-\sqrt{13}}{2}$<x<0,
∴F(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x≥1或x≤\frac{-1-\sqrt{13}}{2}}\\{x-1,0≤x<1}\\{2-x,\frac{-1-\sqrt{13}}{2}<x<0}\end{array}\right.$.
函数图象如图所示:
∴F(x)的最小值是-1.
点评 本题考查了不等式的解法,分段函数的图象及应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60° | B. | 45° | C. | 30° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | $[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$ | C. | $[-\frac{{\sqrt{3}}}{2},1]$ | D. | [0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | θn随着n的增大而增大 | B. | θn随着n的增大而减小 | ||
| C. | 随着n的增大,θn先增大后减小 | D. | 随着n的增大,θn先减小后增大 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com