【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知2sin2A+sin(A﹣B)=sinC,且 . (Ⅰ)求 的值;
(Ⅱ)若c=2, ,求△ABC的面积.
【答案】解:(Ⅰ)由2sin2A+sin(A﹣B)=sinC, 可得2sin2A+sin(A﹣B)=sin(A+B),可得:2sinAcosA=sinBcosA
∵ .
∴cosA≠0.
得2sinA=sinB,
由正弦定理:2a=b,即 = .
(Ⅱ)已知c=2, ,
由余弦定理:得a2+b2﹣ab=4.
又由(Ⅰ)可知:2a=b,
从而解得:a= ,b=
那么:△ABC的面积 = .
【解析】(Ⅰ)根据三角形内角和定理sinC=sin(A+B),打开化解,根据正弦定理,可得 的值;(Ⅱ)c=2, ,由余弦定理求出a,b的值,根据△ABC的面积 可得答案.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣x3+1+a( ≤x≤e,e是自然对数的底)与g(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是( )
A.[0,e3﹣4]
B.[0, +2]
C.[ +2,e3﹣4]
D.[e3﹣4,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆W: (b>0)的一个焦点坐标为 .
(Ⅰ)求椭圆W的方程和离心率;
(Ⅱ)若椭圆W与y轴交于A,B两点(A点在B点的上方),M是椭圆上异于A,B的任意一点,过点M作MN⊥y轴于N,E为线段MN的中点,直线AE与直线y=﹣1交于点C,G为线段BC的中点,O为坐标原点.求∠OEG的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对x∈(﹣ , )恒成立,则φ的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=xln(x﹣1)﹣a(x﹣2). (Ⅰ)若a=2017,求曲线f(x)在x=2处的切线方程;
(Ⅱ)若当x≥2时,f(x)≥0,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:ρ=(ρcosθ+4)cosθ.以极点为坐标原点,极轴为x轴正半轴建立直角坐标系xOy,曲线C的参数方程为 (t为参数). (Ⅰ)求C1 , C2的直角坐标方程;
(Ⅱ)C与C1 , C2交于不同四点,这四点在C上的排列顺次为H,I,J,K,求||HI|﹣|JK||的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数 在(0,2)上存在两个极值点,则a的取值范围是( )
A.(﹣∞,﹣ )
B.(﹣∞,﹣ )
C.(﹣∞,﹣ )∪(﹣ ,﹣ )
D.(﹣e,﹣ )∪(1,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF上一点,且DM⊥平面ACE.
(1)求BM的长;
(2)求二面角A﹣DM﹣B的余弦值的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,
(1)证明:| a+ b|< ;
(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com