精英家教网 > 高中数学 > 题目详情
(2012•梅州二模)定义在R上的函数f(x)满足:f(x+y)=f(x)f(y),且当x>0时,f(x)>1.
(1)求f(0)的值,并证明f(x)是定义域上的增函数:
(2)数列{an}满足a1=a≠0,f(an+1)=f(aan)f(a-1)(n=1,2,3,…),求数列{an}的通项公式及前n项和Sn
分析:(1)在 f(x+y)=f(x)f(y)中,令 x=1,y=0,可得f(0)=1,可以退出当x∈R时,f(x)>0.设x1<x2,计算 f(x1)-f(x2)<0,可得f(x)是定义域上的增函数.
(2)由数列{an}满足a1=a≠0,f(an+1)=f(aan)f(a-1)=f[(aan)+(a-1)],由f(x)是定义域R上的增函数,可得 an+1+1=a(an +1),故{an +1}是以a+1为首项,以a为公比的等比数列.求出{an +1}的通项公式可得{an }的通项公式,从而求得{an }的前n项和sn
解答:解:(1)在 f(x+y)=f(x)f(y)中,令 x=1,y=0,可得f(1)=f(1)f(0).再由f(1)>1,可得f(0)=1.
当x<0时,f(x-x)=f(0)=f(x)f(-x)=1,由-x>0 可得f(-x)>1,f(x)=
1
f(-x)
∈(0,1).
当x>0时,同理可得f(x)>0.  综上可得,当x∈R时,f(x)>0.
设x1<x2,则 f(x1)-f(x2)=f[(x1-x2)+x2]-f(x2)=f(x1-x2)f(x2)-f(x2)=f(x2)[f(x1-x2)-1].
由x1-x2<0,x<0时,0<f(x)<1,可得  f(x1-x2)-1<0,
∴f(x1)-f(x2)<0,f(x1)<f(x2),
故f(x)是定义域上的增函数.
(2)数列{an}满足a1=a≠0,f(an+1)=f(aan)f(a-1)=f[(aan)+(a-1)],
由f(x)是定义域R上的增函数,可得an+1=aan +a-1,即an+1+1=a(an +1),故{an +1}是以a+1为首项,以a为公比的等比数列.
故 an +1=(a+1)an-1,故 an =(a+1)an-1-1.
故{an }的前n项和sn=(a+1)(1+a+a2+a3+…+an-1)-n=
na  , a=1
(a+1)(1-an)
1-a
  ,  a≠1
点评:本题主要考查函数的单调性的应用,等比数列的通项公式,等比数列的前n项和公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•梅州二模)设b,c表示两条直线,α,β表示两个平面,则下列为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)一个社会调查机构就某社区居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).
(1)为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,求月收入在[1500,2000)(元)段应抽出的人数;
(2)为了估计该社区3个居民中恰有2个月收入在[2000,3000)(元)的概率,采用随机模拟的方法:先由计算器算出0到9之间取整数值的随机数,我们用0,1,2,3,…表示收入在[2000,3000)(元)的居民,剩余的数字表示月收入不在[2000,3000)(元)的居民;再以每三个随机数为一组,代表统计的结果,经随机模拟产生了20组随机数如下:
907  966  191  925  271  932  812  458
569  683  431  257  393  027  556  488
730  113  537  989
据此估计,计算该社区3个居民中恰好有2个月收入在[2000,3000)(元)的概率.
(3)任意抽取该社区6个居民,用ξ表示月收入在(2000,3000)(元)的人数,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)设a,b∈R,若复数z=
1+2i
1+i
,则z在复平面上对应的点在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•梅州二模)以双曲线
x2
3
-
y2=1的左焦点为焦点,顶点在原点的抛物线方程是(  )

查看答案和解析>>

同步练习册答案