精英家教网 > 高中数学 > 题目详情
已知直线l:6x-5y-28=0交椭圆
x2
a2
+
y2
b2
=1(a>b>0)
于M,N两点,B(0,b)是椭圆的一个顶点,且b为整数,
而△MBN的重心恰为椭圆的右焦点F2
(1)求此椭圆的方程;
(2)设此椭圆的左焦点为F1,问在椭圆上是否存在一点P,使得∠F2PF1=60°?并证明你的结论.
解(1)设M(x1,y1),N(x2,y2),
则b2x12+a2y12=a2b2,b2x22+a2y22=a2b2
两式相减得
b2(x1+x2)
a2(y1+y2)
=-
y1-y2
x1-x2
=-
6
5
①,
x1+x2+0
3
=c,
y1+y2+b
3
=0
,得x1+x2=3c,y1+y2=-b,代入①
得2b2-5bc+2c2=0?2b=c或b=2c②;
∵M、N在直线L上,得6(x1+x2)-5(y1+y2)=56?18c+5b=56③;
由②③解得(b为整数):b=4,c=2,a2=20,
因此椭圆方程为:
x2
20
+
y2
16
=1

(2)证明:cos∠F1PF2=
r12+r22-16
2r1r2

=
64-2r1r2
2r1r2
128
(r1+r2)2
-1=
3
5
1
2

∴∠F1PF2<60°,
∴使∠F1PF2=60°的点P不存在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l通过直线3x+5y-4=0和直线6x-y+3=0的交点,且与直线2x+3y+5=0平行,则直线l的方程为
6x+9y-7=0
6x+9y-7=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过直线6x-y+3=0和3x+5y-4=0的交点,且与直线2x+y-5=0垂直,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:(2m+1)x+(m+1)y=7m+5,圆C:x2+y2-6x-8y+21=0.

⑴求证:直线l与圆C总相交;

⑵求相交弦的长的最小值及此时m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l经过直线6x-y+3=0和3x+5y-4=0的交点,且与直线2x+y-5=0垂直,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省六安市寿县一中高一(下)期中数学试卷(解析版) 题型:填空题

已知直线l通过直线3x+5y-4=0和直线6x-y+3=0的交点,且与直线2x+3y+5=0平行,则直线l的方程为   

查看答案和解析>>

同步练习册答案