精英家教网 > 高中数学 > 题目详情
y=x3+
3x
+cosx
,则y′等于(  )
A、3x2+x-
2
3
-sinx
B、x3+
1
3
x-
2
3
-sinx
C、3x2+
1
3
x-
2
3
+sinx
D、3x2+
1
3
x-
2
3
-sinx
分析:根据题意并且结合导数的运算公式可得函数的导数.
解答:解:由题意可得:y=x3+
3x
+cosx

所以结合导数的运算公式可得:y′=3x2+
1
3
x-
2
3
-sinx

故选D.
点评:解决此类问题的关键是熟练记忆导数的运算公式,以及结合正确的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x3+ax2+bx+c,曲线y=f(x)上以点P(1,f(1))为切点的切线方程为y=3x+1.
(1)若y=f(x)在x=-2时有极值,求f (x)的表达式;
(2)在(1)的条件下,求y=f(x)在[-3,1]上最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1.
(Ⅰ)若y=f(x)在x=-2时有极值,求f(x)的表达式;
(Ⅱ)在(1)的条件下,求y=f(x)在[-3,1]上最大值;
(Ⅲ)若函数y=f(x)在区间[-2,1]上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c,点P(1,f(1))在函数y=f(x)的图象上,过P点的切线方程为y=3x+1
(1)若y=f(x)在x=-2时有极值,求f(x)的解析式;
(2)若函数y=f(x)在区间[-2,1]上单调递增,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c,点P(1,f(1))在函数y=f(x)的图象上,过P点的切线方程为y=3x+1.
(1)若y=f(x)在x=-2时有极值,求f(x)的解析式;
(2)在(1)的条件下是否存在实数m,使得不等式f(x)≥m在区间[-2,1]上恒成立,若存在,试求出m的最大值,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c,过曲线y=f(x)上的点P(1,f(1))的切线方程为y=3x+1.
(Ⅰ)若y=f(x)在x=-2时有极值,求y=f(x)表达式;
(Ⅱ)在(Ⅰ)的条件下,求y=f(x)在[-3,1]的最大值;
(Ⅲ)若函数y=f(x)在[-1,0]上单调递减,求实数b的取值范围.

查看答案和解析>>

同步练习册答案