精英家教网 > 高中数学 > 题目详情
函数f(x)=x3+ax2+bx+c,曲线y=f(x)上以点P(1,f(1))为切点的切线方程为y=3x+1.
(1)若y=f(x)在x=-2时有极值,求f (x)的表达式;
(2)在(1)的条件下,求y=f(x)在[-3,1]上最大值.
分析:(1)由f(x)=x3+ax2+bx+c求导数,利用导数几何意义结合切线方程及函数f(x)在x=-2时有极值即可列出关于a,b,c的方程,求得a,b,c的值,从而得到f (x)的表达式.
(2)先求函数的导数f'(x),通过f'(x)>0,及f'(x)<0,得出函数的单调性,进一步得出函数的极值即可.
解答:解:(1)由f(x)=x3+ax2+bx+c求导数得f'(x)=3x2+2ax+b
过y=f(x)上点P(1,f(1))的切线方程为:y-f(1)=f'(1)(x-1)即y-(a+b+c+1)=(3+2a+b)(x-1)
3+2a+b=3
a+b+c-2=1
2a+b=0(1)
a+b+c=3(2)

∵有y=f(x)在x=-2时有极值,故f′(-2)=0
∴-4a+b=-12…(3)
由(1)(2)(3)相联立解得a=2,b=-4,c=5
f(x)=x3+2x2-4x+5.
(2)f'(x)=3x2+2ax+b=3x2+4x-4=(3x-2)(x+2)精英家教网
f(x)极大=f(-2)=(-2)3+2(-2)2-4(-2)+5=13f(1)=13+2×1-4×1+5=4
∴f(x)在[-3,1]上最大值为13.
点评:本题主要考查了利用导数求闭区间上函数的最值、利用导数研究函数的单调性等基本知识,考查计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x2+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
,若x=
2
3
时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知函数f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3+ax2-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根. 这四种说法中,正确的个数是(  )

查看答案和解析>>

同步练习册答案