精英家教网 > 高中数学 > 题目详情
设正三棱柱的所有顶点都在一个球面上,且该正三棱柱的底面边长为
3
,侧棱长为2,则该球的表面积为
 
考点:球内接多面体,球的体积和表面积
专题:计算题,空间位置关系与距离
分析:根据正三棱柱的对称性,它的外接球的球心在上下底面中心连线段的中点.再由正三角形的性质和勾股定理,结合题中数据算出外接球半径,用球表面积公式即可算出该球的表面积.
解答: 解:设三棱柱ABC-A′B′C′的上、下底面的中心分别为O、O′,
根据图形的对称性,可得外接球的球心在线段OO′中点O1
∵OA=
3
3
AB=1,OO1=
1
2
AA′=1
∴O1A=
2

因此,正三棱柱的外接球半径R=
2
,可得该球的表面积为S=4πR2=8π
故答案为:8π.
点评:本题给出所有棱长均为2的正三棱柱,求它的外接球的表面积,着重考查了正三棱柱的性质、球的内切外接性质和球的表面积公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某单位2015年元旦联欢晚会准备有歌曲,戏曲,魔术,小品,相声,舞蹈,杂技这7个表演节目,其中歌曲必须放在最后,魔术师表示如果和相声或小品节目相邻时,魔术表演极易出现失误,则尽可能促使魔术表演成功的节目安排的种数有.
A、288B、432
C、576D、720

查看答案和解析>>

科目:高中数学 来源: 题型:

给定两个命题p:函数y=x2+mx+2在[2,+∞)上为增函数;q:关于x的方程x2-x+m=0有实数根.如果p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xex+ax2-x,(a∈R,e为自然对数的底数,且e=2.718…).
(Ⅰ)若a=-
1
2
,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若对于x≥0时,恒有f′(x)-f(x)≥(4a+1)x成立,求实数a的取值范围;
(Ⅲ)当n∈N*时,证明:
e-en+1
1-e
n(n+3)
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线与椭圆
x2
16
+
y2
7
=1
共焦点,双曲线的离心率为
3
2

(1)求椭圆长轴长、离心率.        
(2)求双曲线方程和渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

电子商务在我国发展迅猛,网上购物成为很多人的选择.某购物网站组织了一次促销活动,在网页的界面上打出广告:高级口香糖,10元钱三瓶,有8种口味供你选择(其中有一种为草莓口味).小王点击进入网页一看,只见有很多包装完全相同的瓶装口香糖排在一起,看不见具体口味,由购买者随机点击进行选择.(各种口味的高级口香糖均超过3瓶,且各种口味的瓶数相同,每点击选择一瓶后,网页自动补充相应的口香糖.)
(1)小王花10元钱买三瓶,请问小王共有多少种不同组合选择方式?
(2)小王花10元钱买三瓶,由小王随机点击三瓶,请列出有小王喜欢的草莓味口香糖瓶数ξ的分布列,并计算其数学期望和方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为
3
,|
a
|=
2
,则
a
b
方向上的投影为(  )
A、
6
2
B、
2
2
C、-
2
2
D、-
6
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市青年联合会志愿者.
(Ⅰ)所选3人中女生人数为ξ,求ξ的分别列及数学期望;
(Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率.

查看答案和解析>>

同步练习册答案