精英家教网 > 高中数学 > 题目详情
20.若某空间几何体的三视图如图所示,根据图中数据,可得该几何体的表面积是(  )
A.2$\sqrt{2}$B.2+$\sqrt{2}$C.2+2$\sqrt{2}$D.3$\sqrt{2}$

分析 由三视图可得该几何体是以俯视图为底面,有一条侧棱垂直于底面的三棱锥,根据标识的各棱长及高,代入表面积公式可得答案.

解答 解析:题中的几何体是三棱锥A-BCD,
如图,其中底面△BCD是等腰直角三角形,$BC=CD=\sqrt{2}$,AB⊥平面BCD,BC⊥CD,$AB=\sqrt{2}$,BD=2,AC⊥CD,
所以${S_{△ABC}}={S_{△BCD}}=\frac{1}{2}×\sqrt{2}×\sqrt{2}=1$,${S_{△ABD}}={S_{△ACD}}=\frac{1}{2}×2×\sqrt{2}=\sqrt{2}$,该几何体的表面积为$2+2\sqrt{2}$,
故选C.

点评 本题考查的知识点是由三视图求表面积,其中根据已知分析出几何体的形状及各棱长的值是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=log${\;}_{\frac{1}{2}}$x,给出下列四个命题:
①函数f(|x|)为偶函数;
②若f(a)=|f(b)|其中a>0,b>0,a≠b,则ab=1;
③函数f(-x2+2x)在(1,3)上为单调递增函数;
④若0<a<1,则|f(1+a)|<|f(1-a)|.
则正确命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=x3+3x的单调递增区间是R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.我们可以将1拆分如下:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,以此类推,可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{20}$+$\frac{1}{n}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中m,n∈N*,且m<n,则满足C${\;}_{t}^{m}$=C${\;}_{t}^{n}$的正整数t的值为43.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.一个几何体的三视图如图所示(单位:cm),则该几何体的表面积为23cm2,该该几何体的体积为$\frac{23}{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设A、B是全集U的非空子集,A?∁UB,则下列集合中,空集为(  )
A.A∪BB.UA∪BC.A∩BD.UA∩∁UB

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=|x2-x-6|的增区间为(-2,$\frac{1}{2}$),(3,+∞),减区间为(-∞,-2),($\frac{1}{2}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设向量$\overrightarrow{a}$与$\overrightarrow{b}$夹角为θ,定义$\overrightarrow{a}$与$\overrightarrow{b}$的“向量积”:$\overrightarrow{a}$×$\overrightarrow{b}$是一个向量,它的模|$\overrightarrow{a}$×$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|sinθ.若$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(-1,$\sqrt{3}$),则|$\overrightarrow{a}$×$\overrightarrow{b}$|=2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(Ⅰ)求不等式|x-3|-2|x-1|≥-1的解集;
(Ⅱ)已知a,b∈R*,a+b=1,求证:(a+$\frac{1}{a}$)2+(b+$\frac{1}{b}$)2≥$\frac{25}{2}$.

查看答案和解析>>

同步练习册答案