精英家教网 > 高中数学 > 题目详情
14.已知(1-2x)7=a0+a1x+a2x2+…+a7x7.则|a0|+|a1|+|a2|+…+|a7|=(  )
A.-1B.1C.2187D.-2187

分析 利用二项展开式的通项公式求出二项展开式的通项,判断出展开式各项系数的符号,将绝对值去掉,给二项式中的x赋值-1求出|a0|+|a1|+|a2|+…+|a7|的值.

解答 解:二项展开式的通项为Tr+1=C7r(-x)r=(-2)rC7rxr
∴|a0|+|a1|+|a2|+…+|a7|=a0-a1+a2-…-a7
令二项式的x=-1得
37=a0-a1+a2-…-a7=2187,
∴|a0|+|a1|+|a2|+…+|a7|=2187
故选:C.

点评 解决二项展开式的特定项问题一般利用的工具是二项展开式的通项公式;解决二项展开式的系数和问题一般利用赋值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-$\frac{a}{x}$,g(x)=f(x)+ax-6lnx(a∈R.)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设函数h(x)=x2-mx+4,当a=2时,若?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,已知a1≠0,且a1Sn=2an-a1,n∈N*,
(1)求a1,a2,并求{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将x=2输入以下程序框图(如图),得结果为(  )
A.3B.5C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知一扇形的弧所对的圆心角为54°,半径r=20cm,则扇形的周长为(  )
A.6π cmB.60 cmC.(40+6π) cmD.1 080 cm

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.用长为18m的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,则该长方体的最大体积为(  )
A.2m3B.3m3C.4m3D.5m3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数$z=\frac{{1-\sqrt{3}i}}{{\sqrt{3}+i}}$,则$|{\overline z}|$=(  )
A.1B.2C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程$\frac{x^2}{4+m}+\frac{y^2}{2-m}=1$表示椭圆的必要不充分条件是(  )
A.m∈(-1,2)B.m∈(-4,2)C.m∈(-4,-1)∪(-1,2)D.m∈(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在平面四边形ABCD中,$\overrightarrow{DA}•\overrightarrow{AB}=0,|{\overrightarrow{EC}}|=\sqrt{7},|{\overrightarrow{AD}}|=3,\overrightarrow{AE}=2\overrightarrow{ED}$,$\overrightarrow{DA}$与$\overrightarrow{DC}$的夹角为$\frac{2}{3}π$,$\overrightarrow{EC}$与$\overrightarrow{EB}$的夹角为$\frac{π}{3}$.
(1)求△CDE的面积S;
(2)求$|{\overrightarrow{BE}}|$.

查看答案和解析>>

同步练习册答案