精英家教网 > 高中数学 > 题目详情
(本题满分10分)已知A、B是椭圆与坐标轴正半轴的两交点,在第一象限的椭圆弧上求一点P,使四边形OPAB的面积最大.
时,d取最大值,从而取最大值,这时点P的坐标为
本题主要考查了椭圆的简单性质,解答的关键在于利用椭圆的参数方程设出椭圆上一点的坐标,利用三角函数的有界性求最值.设点P的坐标为,其中,∵,其中为定值,故只须最大即可;
解:设点P的坐标为,其中
,其中为定值,故只须最大即可;
又AB为定长,故只须点P到AB的距离最大即可.AB的方程为,点P到AB的距离为
∴当时,d取最大值,从而取最大值,这时点P的坐标为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如果方程表示焦点在轴上的椭圆,则实数的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2分别为椭圆=1的左、右焦点,c=,若直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是( )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,点P到两点的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.  (Ⅰ)写出C的方程;(Ⅱ)若,求k的值;
(Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知椭圆的右顶点,过的焦点且垂直长轴的弦长为.
(I) 求椭圆的方程;
(II) 设点在抛物线上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本题满分15分)椭圆离心率为,且过点.
椭圆
已知直线与椭圆交于A、B两点,与轴交于点,若
求抛物线的标准方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点.若原点在以线段为直径的圆内,
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列命题:
①已知椭圆两焦点,则椭圆上存在六个不同点,使得△为直角三角形;
②已知直线过抛物线的焦点,且与这条抛物线交于两点,则的最小值为2;
③若过双曲线的一个焦点作它的一条渐近线的垂线,垂足为为坐标原点,则
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是(     )
A.①③④B.①②③C.③④D.①②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ab为大于1的正数,并且,如果的最小值为m,则满足的整点的个数为                                   (    )
A.5B.7C.9D.11

查看答案和解析>>

同步练习册答案