精英家教网 > 高中数学 > 题目详情
设F1、F2分别为椭圆=1的左、右焦点,c=,若直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是( )
A.B.
C.D.
D
解:由已知P(),所以F1P的中点Q的坐标为(
由kF1P=
,kQF2=
,kF1P•kQF2=-1,⇒y2=2b2-
∴y2=(a2-c2)(3-)>0⇒(3-)>0,1>e>
当kF1P=0时,kQF2不存在,此时F2为中点,
综上得
≤e<1.故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设双曲线的两个焦点分别为,离心率为2.
(Ⅰ)求此双曲线的渐近线的方程;
(Ⅱ)若分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F是椭圆(a>b>0)的左焦点, P是椭圆上的一点, PF⊥x轴, O
∥AB(O为原点), 则该椭圆的离心率是 (        )
 
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且

(1)求椭圆的方程;
(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,
设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C的长轴长为2,两准线间的距离为16,则椭圆的离心率e为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点p(x, y)在椭圆上,则的最大值为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)已知A、B是椭圆与坐标轴正半轴的两交点,在第一象限的椭圆弧上求一点P,使四边形OPAB的面积最大.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分) 已知F1、F2是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足是坐标原点),,若椭圆的离心率等于.   
(Ⅰ)求直线AB的方程;
(Ⅱ)若三角形ABF2的面积等于4,求椭圆的方程;
(Ⅲ)在(Ⅱ)的条件下,椭圆上是否存在点M,使得三角形MAB的面积等于8.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的两个焦点为,且,弦AB过点,则△的周长为                                       (   )
A.10B.20 C.2D.

查看答案和解析>>

同步练习册答案