精英家教网 > 高中数学 > 题目详情
(本题满分14分) 已知F1、F2是椭圆的左、右焦点,A是椭圆上位于第一象限内的一点,点B也在椭圆上,且满足是坐标原点),,若椭圆的离心率等于.   
(Ⅰ)求直线AB的方程;
(Ⅱ)若三角形ABF2的面积等于4,求椭圆的方程;
(Ⅲ)在(Ⅱ)的条件下,椭圆上是否存在点M,使得三角形MAB的面积等于8.
(Ⅰ)
(Ⅱ)
(Ⅲ)椭圆上不存在点M使得三角形MAB的面积等于
本试题主要是考查了直线方程的求解,以及椭圆方程的求解和三角形面颊的综合运用。
(1)根据已知的向量关系,直线过原点,并且向量的垂直关系可以得到点A的坐标,然后将点A的坐标代入椭圆方程中可知得到直线的方程。
(2)连结AF1、BF1、AF2、BF2,由椭圆的对称性可知,参数a,bc的关系式,进而得到椭圆的方程。
(3)由于由(Ⅱ)可以求得|AB|=2|OA|
假设在椭圆上存在点M使得三角形MAB的面积等于8
设点M到直线AB的距离为d,则应有
利用三角形的面积公式得到。
解:(Ⅰ)由知,直线AB经过原点,又由,因为椭圆的离心率等于……2分
设A(),由
∴A(),代入椭圆方程得   ∴A(),故直线AB的斜率
因此直线AB的方程为……………4分
(Ⅱ)连结AF1、BF1、AF2、BF2,由椭圆的对称性可知
,所以……………6分
又由解得  故椭圆方程为……………8分
(Ⅲ)由(Ⅱ)可以求得|AB|=2|OA|=2……………9分
假设在椭圆上存在点M使得三角形MAB的面积等于8
设点M到直线AB的距离为,则应有
……………10分
与AB平行且距离为4的直线为
消去x得      ……………13分
此方程无解故椭圆上不存在点M使得三角形MAB的面积等于……………14分
另解:设点P(4)为椭圆上任意一点
则P到直线的距离为
……………13分
故椭圆上不存在点M使得三角形MAB的面积等于……………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图椭圆的右顶点是,上下两个顶点分别为,四边形是矩形(为原点),点分别为线段的中点.

(Ⅰ)证明:直线与直线的交点在椭圆上;
(Ⅱ)若过点的直线交椭圆于两点,关于轴的对称点(不共线),
问:直线是否经过轴上一定点,如果是,求这个定点的坐标,如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2分别为椭圆=1的左、右焦点,c=,若直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是( )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点.若原点在以线段为直径的圆内,
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

给出下列命题:
①已知椭圆两焦点,则椭圆上存在六个不同点,使得△为直角三角形;
②已知直线过抛物线的焦点,且与这条抛物线交于两点,则的最小值为2;
③若过双曲线的一个焦点作它的一条渐近线的垂线,垂足为为坐标原点,则
④根据气象记录,知道荆门和襄阳两地一年中雨天所占的概率分别为20%和18%,两地同时下雨的概率为12%,则荆门为雨天时,襄阳也为雨天的概率是60%.
其中正确命题的序号是(     )
A.①③④B.①②③C.③④D.①②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)已知椭圆的焦点是,又过点
(1)求椭圆的离心率;
(2)又设点在这个椭圆上,且,求的余弦的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ab为大于1的正数,并且,如果的最小值为m,则满足的整点的个数为                                   (    )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)设椭圆: 过点(0,4),离心率为
(1)求的方程;
(2)求过点(3,0)且斜率为的直线被所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若焦点在轴上的椭圆的离心率为,则等于(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案