精英家教网 > 高中数学 > 题目详情
已知A、B、C是椭圆上的三点,其中点A的坐标为,BC过椭圆m的中心,且

(1)求椭圆的方程;
(2)过点的直线l(斜率存在时)与椭圆m交于两点P,Q,
设D为椭圆m与y轴负半轴的交点,且,求实数t的取值范围.
(1)(2)t∈(-2,4)
本题考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键是将 转化为kDN•k=-1进行求解.
(1)根据椭圆的性质和向量的数量积为零得到a,b的值,得到椭圆的方程。
(2)设出直线与椭圆联立方程组,然后结合根与系数的关系,和向量的等式得到参数的关系式,进而利用判别式得到范围。
解(1)∵过(0,0)

∴∠OCA=90°, 即 又∵
将C点坐标代入得 
解得  c2=8,b2=4
∴椭圆m: 
(2)由条件D(0,-2) ∵M(0,t)
1°当k=0时,显然-2<t<2 
2°当k≠0时,设
  消y得
由△>0 可得    ①

    
  
 
  ②
∴t>1 将①代入②得   1<t<4
∴t的范围是(1,4)
综上t∈(-2,4) 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知离心率为的椭圆过点为坐标原点,平行于的直线交椭圆于不同的两点

(1)求椭圆的方程。
(2)证明:若直线的斜率分别为,求证:+=0。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
已知椭圆,斜率为的直线交椭圆两点,且点在直线的上方,
(1)求直线轴交点的横坐标的取值范围;
(2)证明:的内切圆的圆心在一条直线上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图椭圆的右顶点是,上下两个顶点分别为,四边形是矩形(为原点),点分别为线段的中点.

(Ⅰ)证明:直线与直线的交点在椭圆上;
(Ⅱ)若过点的直线交椭圆于两点,关于轴的对称点(不共线),
问:直线是否经过轴上一定点,如果是,求这个定点的坐标,如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点坐标为,那么的值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆()的左焦点轴的垂线交椭圆于点为右焦点,若,则椭圆的离心率为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2分别为椭圆=1的左、右焦点,c=,若直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是( )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C的中心在原点O,它的短轴长为,相应的焦点的准线了l与x轴相交于A,|OF1|=2|F1A|.
(1)求椭圆的方程;
(2)过椭圆C的左焦点作一条与两坐标轴都不垂直的直线l,交椭圆于P、Q两点,若点M在轴上,且使MF2的一条角平分线,则称点M为椭圆的“左特征点”,求椭圆C的左特征点;
(3)根据(2)中的结论,猜测椭圆的“左特征点”的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知椭圆的右顶点,过的焦点且垂直长轴的弦长为.
(I) 求椭圆的方程;
(II) 设点在抛物线上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.

查看答案和解析>>

同步练习册答案