精英家教网 > 高中数学 > 题目详情
(本小题满分12分)设双曲线的两个焦点分别为,离心率为2.
(Ⅰ)求此双曲线的渐近线的方程;
(Ⅱ)若分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线;
(Ⅰ),渐近线方程为;(Ⅱ)
则M的轨迹是中心在原点,焦点在x轴上,长轴长为,短轴长为的椭圆。

试题分析:(Ⅰ)利用离心率为2,结合c2=a2+3,可求a,c的值,从而可求双曲线方程,即可求得渐近线方程;
(Ⅱ)设A(x1,y1),B(x2,y2),AB的中点M(x,y),利用2|AB|=5|F1F2|,建立方程,根据A、B分别为l1、l2上的点,化简可得轨迹方程及对应的曲线.
解:(Ⅰ)

,渐近线方程为
(Ⅱ)设,AB的中点


则M的轨迹是中心在原点,焦点在x轴上,长轴长为,短轴长为的椭圆。
点评:解决该试题的关键是能理解双曲线的性质熟练的得到a,b,的值,注意焦点位置对于渐近线的影响。同时能利用坐标关系式得到轨迹方程。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知离心率为的椭圆过点为坐标原点,平行于的直线交椭圆于不同的两点

(1)求椭圆的方程。
(2)证明:若直线的斜率分别为,求证:+=0。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点作直线交椭圆于两点,是椭圆右焦点,则的周长为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆C:的上顶点坐标为,离心率为.
(Ⅰ)求椭圆方程;
(Ⅱ)设P为椭圆上一点,A为左顶点,F为椭圆的右焦点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知动圆过点,且与圆相内切,则动圆的圆心的轨迹方程_____________;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,过右焦点F作不垂直于轴的弦交椭圆于A、B两点,AB的垂直平分线交轴于N,则|NF|∶|AB|等于(  )
A.      B.      C.      D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的离心率为,焦点在x轴上且长轴长为30.若曲线上的点到椭圆的两个焦点的距离的差的绝对值等于10,则曲线的标准方程为(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果方程表示焦点在轴上的椭圆,则实数的取值范围是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2分别为椭圆=1的左、右焦点,c=,若直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是( )
A.B.
C.D.

查看答案和解析>>

同步练习册答案