精英家教网 > 高中数学 > 题目详情

(本小题满分14分)如图5,正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角

(1)试判断直线与平面的位置关系,并说明理由;

(2)求二面角的余弦值;

(3)在线段上是否存在一点,使?如果存在,求出的值;如果不存在,请说明理由。

 

【答案】

(1)见解析;(2);(3)在线段BC上存在点P使AP⊥DE。此时,.

【解析】本试题主要是考查了立体几何中线面的位置关系,以及二面角的求解,以及线线垂直的综合运用。

(1)在△ABC中,由EF分别是ACBC中点,得EF//AB

AB平面DEFEF平面DEF,∴AB∥平面DEF

(2)建立空间直角坐标系,得到发向量,运用法向量的夹角的都二面角的平面角的求解。

(3)设

得到点P的值。

(1)如图:在△ABC中,由EF分别是ACBC中点,得EF//AB

AB平面DEFEF平面DEF,∴AB∥平面DEF.          …………3分

 法一:(2)以点D为坐标原点,直线DB、DC为x轴、y轴,建立空间直角坐标系,

则A(0,0,2)B(2,0,0)C(0,.…………4分

平面CDF的法向量为设平面EDF的法向量为

 即,                …………6分

,所以二面角E—DF—C的余弦值为;…8分

(3)设

。     …………10分

所以在线段BC上存在点P使AP⊥DE。此时,.        …………12分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•广东模拟)(本小题满分14分 已知函数f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化简f(x)的表达式,并求f(x)的最小正周期;
(II)当x∈[0,
π
2
]  时,求函数f(x)
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分14分)设椭圆C1的方程为(ab>0),曲线C2的方程为y=,且曲线C1C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设AB是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。

查看答案和解析>>

科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题

(本小题满分14分)
已知=2,点()在函数的图像上,其中=.
(1)证明:数列}是等比数列;
(2)设,求及数列{}的通项公式;
(3)记,求数列{}的前n项和,并证明.

查看答案和解析>>

科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题

 (本小题满分14分)

某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第天()的销售价格(单位:元)为,第天的销售量为,已知该商品成本为每件25元.

(Ⅰ)写出销售额关于第天的函数关系式;

(Ⅱ)求该商品第7天的利润;

(Ⅲ)该商品第几天的利润最大?并求出最大利润.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题

(本小题满分14分)已知的图像在点处的切线与直线平行.

⑴ 求满足的关系式;

⑵ 若上恒成立,求的取值范围;

⑶ 证明:

 

查看答案和解析>>

同步练习册答案