精英家教网 > 高中数学 > 题目详情
已知向量a=(sin
x
2
3
cos
x
2
),b=(cos
x
2
,cos
x
2
)
,设f(x)=a•b.
(Ⅰ)求函数f(x)在[0,2π]上的零点;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,已知f(A)=
3
,b=2,sinA=2sinC,求边c的值.
分析:(Ⅰ)利用两个向量的数量积公式以及三角公式化简函数f(x),利用函数零点的定义求得x=π或x=
3

(Ⅱ)由f(A)=sin(A+
π
3
)+
3
2
=
3
,A∈(0,π),得A=
π
3
.由正弦定理得a=2c,
 由a2=b2+c2-2bccosA 求出c.
解答:解:(Ⅰ)f(x)=a•b=sin
x
2
•cos
x
2
+
3
cos2
x
2
=
1
2
sinx+
3
2
cosx+
3
2
=sin(x+
π
3
)+
3
2

sin(x+
π
3
)+
3
2
=0
,得,x+
π
3
=2kπ+
3
,或x+
π
3
=2kπ-
π
3
,k∈Z
由x∈[0,2π],得x=π或x=
3
.故函数f(x)的零点为 π 和
3

(Ⅱ)由f(A)=sin(A+
π
3
)+
3
2
=
3
,A∈(0,π),得A=
π
3

由sinA=2sinC得 a=2c.又b=2,由a2=b2+c2-2bccosA,得4c2=22+c2-2•2ccos
π
3

即  3c2+2c-4=0,∵c>0,∴c=
13
-1
3
点评:本题考查两个向量的数量积的运算,函数的零点的概念,同角三角函数的基本关系的应用,
正弦定理、余弦定理的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
)
b
=(1,cosθ)
θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,则sin2θ+cos2θ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
精英家教网

查看答案和解析>>

同步练习册答案