精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\left\{\begin{array}{l}|lgx|,x>0\\-{x^2}-2x,x≤0\end{array}$,则函数y=2[f(x)]2-3f(x)+1有7个不同的零点.

分析 根据函数和方程之间的关系由2[f(x)]2-3f(x)+1=0得f(x)=1或f(x)=$\frac{1}{2}$,然后利用数形结合进行求解即可.

解答 解:作出f(x)对应的图象如图:
由y=2[f(x)]2-3f(x)+1=0得
[f(x)-1][2f(x)-1]=0,
即f(x)=1或f(x)=$\frac{1}{2}$,
当f(x)=1时,方程有3个根,
当f(x)=$\frac{1}{2}$时,方程有4个根,
综上函数有7个不同的零点,
故答案为:7.

点评 本小题主要考查函数的零点、方程的解法等基础知识,利用换元法结合数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.汶川地震后需搭建简易帐篷,搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②、图③的方式串起来搭建,则串7顶这样的帐篷需要83根钢管.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义在R上的函数f(x)的图象关于点(-$\frac{3}{4}$,0)成中心对称,对任意实数x都有f(x)=-$\frac{1}{f(x+\frac{3}{2})}$,且f(-1)=1,f(0)=-2,则f(0)+f(1)+…+f(2015)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}为等比数列,且a2013+a2015=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx,则a2014(a2012+2a2014+a2016)的值为4π2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x${\;}^{-2{m}^{2}+m+3}$ (m∈Z)是偶函数,且f(x)在(0,+∞)上单调递增.
(1)求m的值,并确定f(x)的解析式;
(2)g(x)=log2[3-2x-f(x)],求g(x)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{a}$=(cosx,2cosx),$\overrightarrow{b}$=(2cosx,sinx),f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)把f(x)的图象向右平移$\frac{π}{6}$个单位得g(x)的图象,求g(x)的单调递增区间; 
(2)当$\vec a≠\vec 0,\vec a$与$\vec b$共线时,求f(x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将抛物线y=x2+2x向上平移1个单位长度,向左平移2个单位长度得到的函数图象解析式是y=(x+3)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知四边形ABCD中,∠ABC=∠ACB=58°,∠CAD=48°,∠BCD=30°,求∠BAD的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=2x3+5$\sqrt{2{x^3}-1}$的最小值是(  )
A.-3?B.1C.$-\frac{21}{4}$?D.7

查看答案和解析>>

同步练习册答案