精英家教网 > 高中数学 > 题目详情
13.函数f(x)=2x3+5$\sqrt{2{x^3}-1}$的最小值是(  )
A.-3?B.1C.$-\frac{21}{4}$?D.7

分析 令t=2x3,即有y=t+5$\sqrt{t-1}$(t≥1),易得y在[1,+∞)递增,计算即可得到最小值.

解答 解:令t=2x3
即有y=t+5$\sqrt{t-1}$(t≥1),
易得y在[1,+∞)递增,
即有t=1,即x=$\root{3}{\frac{1}{2}}$时,f(x)取得最小值1.
故选:B.

点评 本题考查函数的最值的求法,注意运用单调性求解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}|lgx|,x>0\\-{x^2}-2x,x≤0\end{array}$,则函数y=2[f(x)]2-3f(x)+1有7个不同的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=loga(3x-2)+2的图象必过定点(  )
A.(1,2)B.(2,2)C.(2,3)D.($\frac{2}{3}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足$f(3x-1)<f(\frac{1}{3})$的x的取值范围是($\frac{2}{9}$,$\frac{4}{9}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知定义在R上的函数f(x)满足①f(2-x)=f(x);②f(x+2)=f(x-2);③x1,x2∈[1,3]时,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则f(2014),f(2015),f(2016)大小关系为(  )
A.f(2014)>f(2015)>f(2016)B.f(2016)>f(2014)>f(2015)
C.f(2016)=f(2014)>f(2015)D.f(2014)>f(2015)=f(2016)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知四棱锥P-ABCD的底面ABCD为矩形,S为侧棱PC上一点,且PS=$\frac{1}{3}$PC,则三棱锥S-BCD与四棱锥P-ABCD的体积之比为1:3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\sqrt{3}$sinxcosx-$\frac{1}{2}$cos2x.
(1)求函数f(x)的最小正周期;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若a=$\sqrt{2}$,b=1,f($\frac{A}{2}$+$\frac{π}{3}$)=$\frac{1}{3}$,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=lnx+2的图象与直线y=x+a恰好有一个交点,设g(x)=ex-$\frac{1}{2}$x2-ax,当x∈[1,2]时,不等式-m≤g(x)≤m2-4恒成立,则实数m的取值范围是(  )
A.(-∞,-e+$\frac{3}{2}$]B.[-e+$\frac{3}{2}$,e]C.[-e,e]D.[e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,B=45°,C=30°,c=1,则b=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案