| A. | M-N=4 | B. | M+N=4 | C. | M-N=2 | D. | M+N=2 |
分析 利用分式函数的性质进行分解,结合奇函数的对称性即可得到结论.
解答 解:函数f(x)=$\frac{2\sqrt{3}sin(x+\frac{π}{3})+6{x}^{2}+\sqrt{3}x}{6{x}^{2}+3cosx}$=$\frac{2\sqrt{3}(sinx•\frac{1}{2}+cosx•\frac{\sqrt{3}}{2})+{6x}^{2}+\sqrt{3}x}{{6x}^{2}+3cosx}$
=$\frac{\sqrt{3}sinx+\sqrt{3}x}{{6x}^{2}+3cosx}$+$\frac{3cosx+{6x}^{2}}{{6x}^{2}+3cosx}$═$\frac{\sqrt{3}sinx+\sqrt{3}x}{{6x}^{2}+3cosx}$+1,
令g(x)=$\frac{\sqrt{3}sinx+\sqrt{3}x}{{6x}^{2}+3cosx}$,则f(x)=g(x)+1.
显然,g(x)为奇函数,且g(x)的最大值为M-1,最小值为N-1,
故M-1+N-1=0,∴M+N=2,
故选:D.
点评 本题主要考查函数最值的判断,利用分式函数进行分解,利用奇函数的最值互为相反数,即可得到结论,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | -1 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 0 | D. | ±1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com