精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=
(1)用定义证明函数f(x)在(﹣∞,+∞)上为减函数;
(2)若x∈[1,2],求函数f(x)的值域;
(3)若g(x)= ,且当x∈[1,2]时g(x)≥0恒成立,求实数a的取值范围.

【答案】
(1)解:设x1<x2

则f(x1)﹣f(x2)=

∵x1<x2,∴2x2﹣2x1>0

又2x1+1>0,2x2+1>0,

f(x1)﹣f(x2)>0即f(x1)>f(x2

∴f(x)在(﹣∞,+∞)上为减函数


(2)解:∵f(x)在(﹣∞,+∞)上为减函数,

∴f(x)值域为


(3)解:当x∈[{1,2}]时,g(x)∈

∵g(x)≥0在x∈[1,2]上恒成立,

,∴


【解析】(1)根据函数单调性的定义,先在所给区间上任设两个数并确定好大小,然后通过作差法即可获得自变量对应函数值的大小关系,由定义即可获得问题的解答;(2)结合(1)所证明的结论即可获得函数在[1,2]上的单调性,从而可以求的函数在[1,2]上的最值,进而问题即可获得解答;(3)充分利用前两问答结论,即可获得g(x)= 在[1,2]上的最值,结合恒成立的条件即可将问题转化为实数a的不等关系,求解即可获得问题的解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y= 与y=f(x)图象的交点为(x1 , y1),(x2 , y2),…,(xm , ym),则 (xi+yi)=(
A.0
B.m
C.2m
D.4m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数
(1)用定义证明:f(x)为R上的奇函数;
(2)用定义证明:f(x)在R上为减函数;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程的三个实根分别为一个椭圆,一个抛物线,一个双曲线的离心率,则的取值范围(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,关于的不等式的解集为其中

(1)求的值;

(2)令,若函数存在极值点,求实数的取值范围,并求出极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3﹣12x在区间[﹣4,4]上的最小值是(
A.﹣9
B.﹣16
C.﹣12
D.﹣11

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:

(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;

(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在二项式(axm+bxn12(a>0,b>0,m、n≠0)中有2m+n=0,如果它的展开式里最大系数项恰是常数项.
(1)求它是第几项;
(2)求 的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.

(1)求证:BABM=BCBN;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.

查看答案和解析>>

同步练习册答案