精英家教网 > 高中数学 > 题目详情
设 A(x1,y1)、B(x2,y2)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的两点,O为坐标原点,向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM
=cosθ•
OA
+sinθ•
OB
,证明点M在椭圆上;
(3)若点P、Q为椭圆 上的两点,且
PQ
OB
,试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请说明理由.
分析:(1)将x1=a,y1=0代入(
x1
a
y1
b 
)•(
x2
a
y2
b 
)=0,得(1,0)•(
x2
a
y2
b 
)=0,由此能求出点B的坐标.
(2)因(
x1
a
y1
b 
)•(
x2
a
y2
b 
)=0,所以
x1x2
a2
+
y1y2
b2
=0
,又因A(x1,y1),B(x2,y2)在椭圆上,所以
x12
a2
+
y12
b2
=1
x22
a2
+
y22
b2
=1
OM
=cosθ
OA
+sinθ
OB
=(x1cosθ+x2sinθ,y1cosθ+y2sinθ),由此能够证明所以点M在椭圆上.
(3)设点P(m1,n1)Q(m2,n2),则
PQ
=(m2-m1n2-n1)
,且
m
2
1
a2
+
n
2
1
b2
=1
m
2
2
a2
+
n
2
2
b2
=1
,所以
(m1-m2)(m1+m2)
a2
+
(n1-n2)(n1+n2)
b2
=0
,故
PQ
⊥(
m1+m2
a2
n1+n2
b2
)
,由此能够导出线段PQ被直线OA平分.
解答:解:(1)将x1=a,y1=0代入(
x1
a
y1
b 
)•(
x2
a
y2
b 
)=0,得(1,0)•(
x2
a
y2
b 
)=0,
所以x2=0,y2=±b,即点B的坐标为(0,±b).
(2)因(
x1
a
y1
b 
)•(
x2
a
y2
b 
)=0,所以
x1x2
a2
+
y1y2
b2
=0

又因A(x1,y1),B(x2,y2)在椭圆上,所以
x12
a2
+
y12
b2
=1
x22
a2
+
y22
b2
=1
OM
=cosθ
OA
+sinθ
OB
=(x1cosθ+x2sinθ,y1cosθ+y2sinθ)
把M点坐标代入椭圆方程左边得:
(x1cosθ+x2sinθ)2
a2
+
(y1cosθ+sinθ)2
b2
=
x12cos2θ+x22sin2θ
a2
+
y12cos2θ+y22sin2θ
b2
+2sinθcosθ(
x1x2
a2
+
y2y2
b2
)
=cos2θ+sin2θ+2sinθcosθ×0=1所以点M在椭圆上.
(3)设点P(m1,n1)Q(m2,n2),则
PQ
=(m2-m1n2-n1)

m
2
1
a2
+
n
2
1
b2
=1
m
2
2
a2
+
n
2
2
b2
=1

所以
(m1-m2)(m1+m2)
a2
+
(n1-n2)(n1+n2)
b2
=0

故有(m1-m2n1-n2)•(
m1+m2
a2
n1+n2
b2
)=0

PQ
⊥(
m1+m2
a2
n1+n2
b2
)

PQ
OB
,而
OB
=(x2y2)
,得(x2y2)•(
m1+m2
a2
n1+n2
b2
)=0
(A)
又由
x1x2
a2
+
y1y2
b2
=0
,得(x2y2)•(
x1
a2
y1
b2
)=0
,(B)
所以由(A)(B)得(
m1+m2
a2
n1+n2
b2
)=λ(
x1
a2
y1
b2
)

(
m1+m2
2
n1+n2
2
)=
λ
2
(x1y1)

故线段PQ被直线OA平分.
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,直线l过点F交抛物线C于A、B两点.
(Ⅰ)设A(x1,y1),B(x2,y2),求
1
y1
+
1
y2
的取值范围;
(Ⅱ)是否存在定点Q,使得无论AB怎样运动都有∠AQF=∠BQF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上两点,且
OM
=
1
2
(
OA
+
OB
)
,O为坐标原点,已知点M的横坐标为
1
2

(Ⅰ)求证:点M的纵坐标为定值;
(Ⅱ)定义定义Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011
(Ⅲ)对于(Ⅱ)中的Sn,设an=
1
2Sn+1
(n∈N*)
.若对于任意n∈N*,不等式kan3-3an2+1>0恒成立,试求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
上的两点,已知O为坐标原点,椭圆的离心率e=
3
2
,短轴长为2,且
m
=(
x1
b
y1
a
),
n
=(
x2
b
y2
a
)
,若
m
n
=0

(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c)(c为半焦距),求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
图象上任意两点,且
OM
=
1
2
OA
+
OB
),已知点M的横坐标为
1
2
,且有Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
),其中n∈N*且n≥2,
(1)求点M的纵坐标值;
(2)求s2,s3,s4及Sn
(3)已知an=
1
(Sn+1)(Sn+1+1)
,其中n∈N*,且Tn为数列{an}的前n项和,若Tn≤λ(Sn+1+1)对一切n∈N*都成立,试求λ的最小正整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(x1,y1)、B(x2,y2)、C(x3,y3)是抛物线y=x2上的三个动点,其中x3>x2≥0,△ABC是以B为直角顶点的等腰直角三角形.
(1)求证:直线BC的斜率等于x2+x3,也等于
x2-x1x3-x2

(2)求A、C两点之间距离的最小值.

查看答案和解析>>

同步练习册答案