精英家教网 > 高中数学 > 题目详情

【题目】(13分)如图,椭圆经过点,离心率,直线l的方程为

1)求椭圆C的方程;

2是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得? 若存在,求的值; 若不存在,请说明理由.

【答案】(12

【解析】试题分析:(1)将点代入椭圆方程,再根据,解方程组可求得的值,从而可得椭圆方程.(2)设直线的方程为,与椭圆方程联立,消去得关于的一元二次方程,由韦达定理可得两根之和,两根之积.根据斜率公式分别求的值.求

试题解析:解:(1)由在椭圆上,得

..

①②,得

故椭圆C的方程为5

2)设直线的方程为

7

10

又将代入

, ,, 12

故存在常数符合题意. 13

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)的二次项系数为a(a<0),且1和3是函数y=f(x)+2x的两个零点.若方程f(x)+6a=0有两个相等的根,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行下面的程序框图,若p=0.95,则输出的n=(

A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线的参数方程为为参数).

(1)直线且与曲线相切,求直线的极坐标方程;

(2)点与点关于轴对称,求曲线上的点到点的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=
(1)若f(x)>k的解集为{x|x<﹣3或x>﹣2},求k的值;
(2)若对任意x>0,f(x)≤t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)2sin(2xφ)(0φ2π)的图象过点(,-2)

1)求φ的值;

2)若f(),-α0,求sin(2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , a1=10,an+1=9Sn+10.
(1)求证:{lgan}是等差数列;
(2)设Tn是数列{ }的前n项和,求Tn
(3)求使Tn (m2﹣5m)对所有的n∈N*恒成立的整数m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第年与年销量 (单位:万件)之间的关系如表:

(Ⅰ)在图中画出表中数据的散点图;

(Ⅱ)根据(Ⅰ)中的散点图拟合的回归模型,并用相关系数甲乙说明;

(Ⅲ)建立关于的回归方程,预测第5年的销售量约为多少?.

附注:参考数据: .

参考公式:相关系数

回归方程中斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等差数列,且a1=1.{bn}为等比数列,数列{an+bn}的前三项依次为3,7,13.求
(1)数列{an},{bn}的通项公式;
(2)数列{an+bn}的前n项和Sn

查看答案和解析>>

同步练习册答案