精英家教网 > 高中数学 > 题目详情

设递增等差数列的前项和为,已知的等比中项,
(I)求数列的通项公式
(II)求数列的前项和

解:在递增等差数列中,设公差为

解得      7分


所求   12分

解析

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年湖北省等八校高三第一次联考理科数学试卷(解析版) 题型:解答题

设等差数列的前项和为,满足:.递增的等比数列项和为,满足:

(Ⅰ)求数列的通项公式;

(Ⅱ)设数列,均有成立,求

 

查看答案和解析>>

科目:高中数学 来源:2014届陕西宁强县天津高级中学高二第二次月考理数学试卷(解析版) 题型:选择题

是公差为)的无穷等差数列的前项和,则下列命题错误的是(     )

A.若  ,则数列有最大项        

B.若数列 有最大项,则

C.若数列 是递增数列,则对于任意的,均有        

D.若对于任意的,均有,则数列是递增数列

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年贵州省高三年级第五次月考文科数学 题型:解答题

(本小题满分l0分)(注意:在试题卷上作答无效)

设递增等差数列的前项和为,已知的等比中项,

(I)求数列的通项公式;

(II)求数列的前项和.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题

设递增等差数列的前项和为,已知的等比中项,

(I)求数列的通项公式

(II)求数列的前项和

 

查看答案和解析>>

同步练习册答案