精英家教网 > 高中数学 > 题目详情

是公差为)的无穷等差数列的前项和,则下列命题错误的是(     )

A.若  ,则数列有最大项        

B.若数列 有最大项,则

C.若数列 是递增数列,则对于任意的,均有        

D.若对于任意的,均有,则数列是递增数列

 

【答案】

C

【解析】对于选项A,若d<0,则列数{Sn}有最大项是正确的,如果首项小于等于0,则S1即为最大项,若首项为正,则所有正项的和即为最大项;

对于B选项,若数列{Sn}有最大项,则d<0是正确的,若前n项和有最大项,则必有公差小于0;

对于选项C,若数列{Sn}是递增数列,则对任意n∈N*,均有Sn>0是错误的,因为递增数列若首项为负,则必有S1<0,故均有Sn>0不成立,

对于选项D,若对任意n∈N*,均有Sn>0,则数列{Sn}是递增数列,正确,这是因为若公差小于0,一定存在某个实数k,当n>k时,以后所有项均为负项,故不正确;

综上,选项C是错误的

故选C

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知公比为q(0<q<1)的无穷等比数列{an}各项的和为9,无穷等比数列{an2}各项的和为
815

(1)求数列{an}的首项a1和公比q;
(2)对给定的k(k=1,2,3,…,n),设数列T(k)是首项为ak,公差为2ak-1的等差数列,求数列T(2)的通项公式及前10项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=
x2-8x+20
+
x2+1
的最小值为5;
②若直线y=kx+1与曲线y=|x|有两个交点,则k的取值范围是-1≤k≤1;
③若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2
2
,则m的倾斜角可以是15°或75°
④设Sn是公差为d(d≠0)的无穷等差数列{an}的前n项和,若对任意n∈N*,均有Sn>0,则数列{Sn}是递增数列
⑤设△ABC的内角A.B.C所对的边分别为a,b,c,若三边的长为连续的三个正整数,且A>B>C,3b=20acosA则sinA:sinB:sinC为6:5:4
其中所有正确命题的序号是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2…的最小值记为Bn,dn=An-Bn
(Ⅰ)若{an}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;
(Ⅱ)设d是非负整数,证明:dn=-d(n=1,2,3…)的充分必要条件为{an}是公差为d的等差数列;
(Ⅲ)证明:若a1=2,dn=1(n=1,2,3,…),则{an}的项只能是1或者2,且有无穷多项为1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南通二模)设无穷数列{an}满足:?n∈N*,an<an+1anN*.记bn=aan,  cn=aan+1(n∈N*)
(1)若bn=3n(n∈N*),求证:a1=2,并求c1的值;
(2)若{cn}是公差为1的等差数列,问{an}是否为等差数列,证明你的结论.

查看答案和解析>>

同步练习册答案