精英家教网 > 高中数学 > 题目详情

在△ABC中,如果sinAcosB=-数学公式,那么△ABC的形状是


  1. A.
    直角三角形
  2. B.
    锐角三角形
  3. C.
    钝角三角形
  4. D.
    不能确定
C
分析:直接通过已知表达式,判断cosB的范围,判断三角形的形状即可.
解答:因为△ABC中,sinAcosB=-,所以cosB<0,所以B为钝角,三角形是钝角三角形.
故选C.
点评:本题考查三角形的形状的判断,三角函数的符号的判断是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,如果点A在BC边上的射影是D,△ABC的三边BC、AC、AB的长依次是a、b、c,则a=b•cosC+c•cosb,类比这一结论,推广到空间:在四面体P-ABC中,△ABC、△PAB、△PBC、△PCA的面积依次为S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度数依次为α、β、γ,则S=
S1cosα+S2cosβ+S3cosγ
S1cosα+S2cosβ+S3cosγ

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角B为锐角,已知内角A、B、C所对的边分别为a、b、c,向量
m
=(2sin(A+C),
3
)
n
=(cos2B,2cos2
B
2
-1)
,且向量
m
n
共线.
(1)求角B的大小;
(2)如果b=1,且S△ABC=
3
2
,求a+c的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,角B为锐角,已知内角A、B、C所对的边分别为a、b、c,向量
m
=(2sin(A+C),
3
)
n
=(cos2B,2cos2
B
2
-1)
,且向量
m
n
共线.
(1)求角B的大小;
(2)如果b=1,且S△ABC=
3
2
,求a+c的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年湖北省黄冈中学高三(上)期中数学试卷(文科)(解析版) 题型:填空题

在△ABC中,如果点A在BC边上的射影是D,△ABC的三边BC、AC、AB的长依次是a、b、c,则a=b•cosC+c•cosb,类比这一结论,推广到空间:在四面体P-ABC中,△ABC、△PAB、△PBC、△PCA的面积依次为S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度数依次为α、β、γ,则S=   

查看答案和解析>>

科目:高中数学 来源:2010年安徽省合肥市肥西中学高考数学模拟试卷1(文理合卷)(解析版) 题型:解答题

在△ABC中,如果点A在BC边上的射影是D,△ABC的三边BC、AC、AB的长依次是a、b、c,则a=b•cosC+c•cosb,类比这一结论,推广到空间:在四面体P-ABC中,△ABC、△PAB、△PBC、△PCA的面积依次为S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度数依次为α、β、γ,则S=   

查看答案和解析>>

同步练习册答案