在△ABC中,如果点A在BC边上的射影是D,△ABC的三边BC、AC、AB的长依次是a、b、c,则a=b•cosC+c•cosb,类比这一结论,推广到空间:在四面体P-ABC中,△ABC、△PAB、△PBC、△PCA的面积依次为S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度数依次为α、β、γ,则S= .
【答案】分析:这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中,若△ABC中,如果点A在BC边上的射影是D,△ABC的三边BC、AC、AB的长依次是a、b、c,则a=b•cosC+c•cosb,我们可以类比这一性质,推理出若四面体P-ABC中,△ABC、△PAB、△PBC、△PCA的面积依次为S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度数依次为α、β、γ,则S=S1cosα+S2cosβ+S3cosγ.
解答:解:由已知在平面几何中,
在△ABC中,如果点A在BC边上的射影是D,△ABC的三边BC、AC、AB的长依次是a、b、c,则a=b•cosC+c•cosb,
我们可以类比这一性质,推理出:
若四面体P-ABC中,△ABC、△PAB、△PBC、△PCA的面积依次为S、S1、S2、S3,
二面角P-AB-C、P-BC-A、P-CA-B的度数依次为α、β、γ,则S=S1cosα+S2cosβ+S3cosγ.
故答案为:S1cosα+S2cosβ+S3cosγ.
点评:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).