精英家教网 > 高中数学 > 题目详情
若A=R,B={y|y≥2},x∈A,f:x→y=x2-2x+2,则f:A→B是映射吗?如何改动可使之成为映射与一一映射?

解:∵y=x2-2x+2=(x-1)2+1≥1,

∴B{y|y≥2},由于部分原象没有象,则这个对应不是映射.

不妨取B={y|y≥1},则这个对应是映射(答案不唯一);

不妨取A={x|x≥1},B={y|y≥1},则这个对应是一一映射.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在闭区间[1,6]上等可能地随机取两个数a,b.
(Ⅰ)若a∈Z,b∈Z,求事件“a+b≤4”的概率;
(Ⅱ)若a∈R,b∈R,将a、b分别作为点P的横坐标、纵坐标,求点P落在圆(x-1)2+(y-1)2=25内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x||x|>1,x∈R},B={y|y=x2,x∈R},则(CRA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若对任意x∈A,y∈B,(A⊆R,B⊆R)有唯一确定的f(x,y)与之对应,则称f(x,y)为关于x,y的二元函数.
定义:满足下列性质的二元函数f(x,y)为关于实数x,y的广义“距离”:
(1)非负性:f(x,y)≥0,当且仅当x=y时取等号;
(2)对称性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z均成立.
给出三个二元函数:①f(x,y)=(x-y)2;②f(x,y)=|x-y|; ③f(x,y)=
x-y

请选出所有能够成为关于x,y的广义“距离”的序号

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在闭区间[1,6]上等可能地随机取两个数a,b.
(Ⅰ)若a∈Z,b∈Z,求事件“a+b≤4”的概率;
(Ⅱ)若a∈R,b∈R,将a、b分别作为点P的横坐标、纵坐标,求点P落在圆(x-1)2+(y-1)2=25内的概率.

查看答案和解析>>

同步练习册答案