精英家教网 > 高中数学 > 题目详情
11.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{3}$,左焦点F到右准线l的距离为10,圆G:(x-1)2+y2=1.
(1)求椭圆的方程;
(2)若P是椭圆上任意一点,过点P作圆G的切线,切点为Q,过点P作右准线l的垂线,垂足为H,求$\frac{PQ}{PH}$的取值范围;
(3)是否存在以椭圆上的点M为圆心的圆M,使得过圆M上任意一点N作圆G的切线(切点为T)都满足$\frac{NF}{NT}=\sqrt{2}$?若存在,请求出圆M的方程;若不存在,请说明理由.

分析 (1)由题意可得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{3}}\\{\frac{{a}^{2}}{c}+c=10}\end{array}\right.$,解方程组得到a,c的值,结合隐含条件求得b,则椭圆方程可求;
(2)圆G:(x-1)2+y2=1的圆心在椭圆的右焦点上,把$\frac{PQ}{PH}$转化为含椭圆离心率与PH的式子,求出PH的范围可得答案;
(3)设圆M:(x-m)2+(y-n)2=r2(r>0)满足条件,N(x,y),可知点(m,n)满足$\frac{{m}^{2}}{9}+\frac{{n}^{2}}{8}=1$,化圆的方程为一般式,由$\frac{NF}{NT}=\sqrt{2}$得x2+y2-6x-1=0,
代入圆的方程可得2(m-3)x+2ny-m2-n2-1+r2=0对圆M上点N(x,y)恒成立,由系数为0求得m,n,r的值,验证满足$\frac{{m}^{2}}{9}+\frac{{n}^{2}}{8}=1$后可得答案.

解答 解:(1)由题意可得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{3}}\\{\frac{{a}^{2}}{c}+c=10}\end{array}\right.$,解得a=3,c=1,∴b2=a2-c2=8.
则椭圆方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{8}=1$;
(2)圆G:(x-1)2+y2=1的圆心在椭圆的右焦点上,
∴$(\frac{PQ}{PH})^{2}=\frac{P{G}^{2}-1}{P{H}^{2}}={e}^{2}-\frac{1}{P{H}^{2}}$,
∵e=$\frac{1}{3}$,PH∈[$\frac{{a}^{2}}{c}-a,\frac{{a}^{2}}{c}+a$]=[6,12],
∴$(\frac{PQ}{PH})^{2}∈$[$\frac{1}{12},\frac{15}{144}$],则$\frac{PQ}{PH}$∈[$\frac{\sqrt{3}}{6},\frac{\sqrt{15}}{12}$];
(3)设圆M:(x-m)2+(y-n)2=r2(r>0)满足条件,N(x,y),
其中点(m,n)满足$\frac{{m}^{2}}{9}+\frac{{n}^{2}}{8}=1$,则x2+y2=2mx+2ny-m2-n2+r2
$NF=\sqrt{(x+1)^{2}+{y}^{2}},NT=\sqrt{(x-1)^{2}+{y}^{2}-{1}^{2}}$,
要使$\frac{NF}{NT}=\sqrt{2}$即NF2=2NT2,即x2+y2-6x-1=0,
代入x2+y2=2mx+2ny-m2-n2+r2
得2(m-3)x+2ny-m2-n2-1+r2=0对圆M上点N(x,y)恒成立,
只要使$\left\{\begin{array}{l}{m-3=0}\\{n=0}\\{{r}^{2}={m}^{2}+{n}^{2}+1}\end{array}\right.$,得$\left\{\begin{array}{l}{m=3}\\{n=0}\\{{r}^{2}=10}\end{array}\right.$,经检验m=3,n=0满足$\frac{{m}^{2}}{9}+\frac{{n}^{2}}{8}=1$,
故存在以椭圆上点M为圆心的圆M,使得过圆M上任意一点N作圆G的切线(切点为T
都满足$\frac{NF}{NT}=\sqrt{2}$,圆M的方程为(x-3)2+y2=10.

点评 本题考查椭圆的简单性质,考查了圆与圆锥曲线的位置关系,对于(3)的求解是该题的难点所在,与恒成立问题进行了交汇,试题设置难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知曲线y=$\frac{1}{{e}^{x}+1}$,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|lgx|,若$f(a)=f(b)=2f(\frac{a+b}{2})(0<a<b)$,则b所在区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),P是椭圆上非x轴上的一点,△PF1F2中,若F2(右焦点)关于∠F1PF2的外角平分线的对称点Q,则点Q的轨迹是(  )
A.椭圆B.C.抛物线D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=x3-($\frac{1}{2}$)x的零点在区间(n-1,n)内,则整数n=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(-1,2),则(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$=(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个几何体的三视图如图所示,则这个几何体的表面积等于10+2$\sqrt{3}$+4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某厂家拟举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量t万件满足t=5-$\frac{9}{2(x+1)}$(其中0≤x≤a2-3a+4,a为正常数),现假定生产量与销售量相等,已知生产该产品t万件还需投入成本(10+2t)万元(不含促销费用),产品的销售价格定为(t+$\frac{20}{t}$)万元/万件.
(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;
(Ⅱ)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四面体ABCD中,O是BD的中点,E是BC中点,CB=CD,AB=AD.求证:
(1)BD⊥AC  
(2)OE∥平面ADC.

查看答案和解析>>

同步练习册答案