已知椭圆
:
的左、右焦点分别为
,它的一条准线为
,过点
的直线与椭圆
交于
、
两点.当
与
轴垂直时,
.
(1)求椭圆
的方程;
(2)若
,求
的内切圆面积最大时正实数
的值.
![]()
(1)
;(2)
.
【解析】本试题主要是考查了椭圆的方程的求解以及,三角形的中内切圆的性质的运用,结合向量工具表示面积。
解:(1)当
与
轴垂直时,
得
得
即
---------------------(2分)
又
解得
,
,![]()
故所求椭圆
的方程为
.----------------------------------(2分)
(2)由点
,
,可设
,![]()
① 当
与
轴垂直时,
依
(其中
为
的内切圆半径)
即
得
,此时可知
------------------------------------(2分)
②当
与
轴不垂直时,
不妨设直线
的方程为![]()
代入
得![]()
![]()
则
---------------(2分)
从而可得![]()
又点
到直线
的距离
.
依
(其中
为
的内切圆半径)
即
-------------------------------------------(2分)
得![]()
![]()
=![]()
=![]()
知在区间
上该函数单调递增,
故当
时,即直线
的斜率不存在时,
最大为
,亦即
的内切圆面积最大.
此时可知
综上所求为
.----------------------2分
科目:高中数学 来源: 题型:
| y2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| PA |
| AB |
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直角坐标系
中,已知椭圆
的离心率e=
,左右两个焦分别为
.过右焦点
且与
轴垂直的
直线与椭圆
相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆
的方程;
(Ⅱ) 设椭圆
的左顶点为A,下顶点为B,动点P满足
,
(
)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆
上. ![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直角坐标系
中,已知椭圆
的离心率e=
,左右两个焦分别为
.过右焦点
且与
轴垂直的
直线与椭圆
相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆
的方程;
(Ⅱ) 设椭圆
的左顶点为A,下顶点为B,动点P满足
,
(
)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆
上. ![]()
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年贵州省高三第一次月考文科数学 题型:解答题
(本小题满分12分)已知椭圆
的方程为
,双曲线
的左、右焦
点分别是
的左、右顶点,而
的左、右顶点分别是
的左、右焦点.
(1)求双曲线
的方程;
(2)若直线
与双曲线C2恒有两个不同的交点A和B,求
的范围。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com