3£®ÉèÊýÁÐ{an}µÄÊ×Ïîa1Ϊ³£Êý£¬ÇÒ${a_{n+1}}={3^n}-2{a_n}£¨n¡Ê{N_+}£©$£®
£¨1£©Èô${a_1}¡Ù\frac{3}{5}$£¬Ö¤Ã÷£º$\left\{{{a_n}-\frac{3^n}{5}}\right\}$ÊǵȱÈÊýÁУ»
£¨2£©Èô${a_1}=\frac{3}{2}$£¬{an}ÖÐÊÇ·ñ´æÔÚÁ¬ÐøÈýÏî³ÉµÈ²îÊýÁУ¿Èô´æÔÚ£¬Ð´³öÕâÈýÏÈô²»´æÔÚ˵Ã÷ÀíÓÉ£®
£¨3£©Èô{an}ÊǵÝÔöÊýÁУ¬Çóa1µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©¸ù¾ÝµÈ±ÈÊýÁе͍Ò壬½áºÏÌõ¼þ£¬¼´¿ÉµÃÖ¤£»
£¨2£©ÓÉ£¨1£©Çó³öÊýÁÐ{an}µÄͨÏʽ£¬ÔÙÓɵȲîÊýÁеÄÐÔÖÊ£¬µÃµ½·½³Ì£¬Çó³ön£¬¼´¿ÉÅжϣ»
£¨3£©ÔËÓÃÊýÁÐ{an}µÄͨÏʽ£¬×÷²î£¬ÔÙÓÉnΪżÊýºÍÆæÊý£¬Í¨¹ýÊýÁеĵ¥µ÷ÐÔ£¬¼´¿ÉµÃµ½·¶Î§

½â´ð £¨1£©Ö¤Ã÷£ºÒòΪ$\frac{{a}_{n+1}-\frac{1}{5}•{3}^{n+1}}{{a}_{n}-\frac{1}{5}•{3}^{n}}$=$\frac{{3}^{n}-2{a}_{n}-\frac{1}{5}•{3}^{n+1}}{{a}_{n}-\frac{1}{5}•{3}^{n}}$
=$\frac{\frac{2}{5}•{3}^{n}-2{a}_{n}}{-£¨\frac{1}{5}•{3}^{n}-{a}_{n}£©}$=-2£¬
ËùÒÔÊýÁÐ{an-$\frac{{3}^{n}}{5}$}ÊÇÊ×ÏîΪa1-$\frac{3}{5}$£¬¹«±ÈΪ-2µÄµÈ±ÈÊýÁУ»
£¨2£©½â£º{an-$\frac{{3}^{n}}{5}$}}Êǹ«±ÈΪ-2£¬Ê×ÏîΪa1-$\frac{3}{5}$=$\frac{9}{10}$µÄµÈ±ÈÊýÁУ®
ͨÏʽΪan=$\frac{{3}^{n}}{5}$+£¨a1-$\frac{3}{5}$£©£¨-2£©n-1=$\frac{{3}^{n}}{5}$+$\frac{9}{10}$•£¨-2£©n-1£¬
Èô{an}ÖдæÔÚÁ¬ÐøÈýÏî³ÉµÈ²îÊýÁУ¬Ôò±ØÓÐ2an+1=an+an+2£¬
¼´2[$\frac{{3}^{n+1}}{5}$+$\frac{9}{10}$•£¨-2£©n]=$\frac{{3}^{n}}{5}$+$\frac{9}{10}$•£¨-2£©n-1+$\frac{{3}^{n+2}}{5}$+$\frac{9}{10}$•£¨-2£©n+1£¬
½âµÃn=4£¬¼´a4£¬a5£¬a6³ÉµÈ²îÊýÁУ®  
£¨3£©½â£ºÈç¹ûan+1£¾an³ÉÁ¢£¬
¼´$\frac{{3}^{n+1}}{5}$+£¨a1-$\frac{3}{5}$£©•£¨-2£©n£¾$\frac{{3}^{n}}{5}$+£¨a1-$\frac{3}{5}$£©•£¨-2£©n-1¶ÔÈÎÒâ×ÔÈ»Êý¾ù³ÉÁ¢£®
»¯¼òµÃ$\frac{4}{15}$•3n£¾-£¨a1-$\frac{3}{5}$£©•£¨-2£©n£¬
µ±nΪżÊýʱa1£¾$\frac{3}{5}$-$\frac{4}{15}$•£¨$\frac{3}{2}$£©n£¬
ÒòΪp£¨n£©=$\frac{3}{5}$-$\frac{4}{15}$•£¨$\frac{3}{2}$£©nÊǵݼõÊýÁУ¬
ËùÒÔp£¨n£©max=p£¨2£©=0£¬¼´a1£¾0£»     
µ±nÎªÆæÊýʱ£¬a1£¼$\frac{3}{5}$+$\frac{4}{15}$•£¨$\frac{3}{2}$£©n£¬
ÒòΪq£¨n£©=$\frac{3}{5}$+$\frac{4}{15}$•£¨$\frac{3}{2}$£©nÊǵÝÔöÊýÁУ¬
ËùÒÔq£¨n£©min=q£¨1£©=1£¬¼´a1£¼1£»
¹Êa1µÄȡֵ·¶Î§Îª£¨0£¬1£©£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏʽ¼°µÈ±ÈÊýÁеÄÖ¤Ã÷£¬¿¼²éµÈ²îÊýÁеÄÐÔÖʺÍÒÑÖªÊýÁеĵ¥µ÷ÐÔ£¬Çó²ÎÊýµÄ·¶Î§£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌâºÍÒ×´íÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=|x-a|£¬²»µÈʽf£¨x£©¡Ü3µÄ½â¼¯Îª[-1£¬5]£®
£¨¢ñ£©ÇóʵÊýaµÄÖµ£»
£¨¢ò£©Èôf£¨x£©+f£¨x+5£©¡Ým¶ÔÒ»ÇÐʵÊýxºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®¹ýµãA£¨4£¬-3£©£¬ÇÒÓëÔ­µã¾àÀë×î´óµÄÖ±Ïß·½³ÌÊÇ4x-3y-25=0£®£¨ÓÃÒ»°ãʽ±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®¾Ý²âË㣺ijÆóҵijһÖÖ²úÆ·µÄÄêÏúÊÛÁ¿mÍò¼þÓëÄê´ÙÏú·ÑÓÃxÍòÔª£¨x¡Ý0£©Âú×ãm=6-$\frac{5}{x+1}$£®ÒÑÖª¸Ã²úÆ·µÄǰÆÚͶÈëÐèÒª4ÍòÔª£¬Ã¿Éú²ú1Íò¼þ¸Ã²úÆ·ÐèÒªÔÙͶÈë10ÍòÔª£¬ÆóÒµ½«Ã¿¼þ¸Ã²úÆ·µÄÏúÊÛ¼Û¸ñ¶¨ÎªÃ¿¼þ²úÆ·ÄêÆ½¾ù³É±¾µÄ$\frac{3}{2}$±¶£®£¨¶¨¼Û²»¿¼ÂÇ´ÙÏú³É±¾£©£®
£¨1£©Èç¹û¸ÃÆóÒµ²»¸ã´ÙÏú»î¶¯£¬ÄÇô¸Ã²úÆ·µÄÄêÏúÊÛÁ¿ÊǶàÉÙÍò¼þ£¿
£¨2£©ÊÔ½«¸Ã²úÆ·µÄÄêÀûÈóy£¨ÍòÔª£©±íʾΪÄê´ÙÏú·ÑÓÃx£¨ÍòÔª£©µÄº¯Êý£»
£¨3£©xΪºÎֵʱ£¬¸Ã²úÆ·µÄÄêÀûÈó×î´ó£¬×î´óÄêÀûÈóÊǶàÉÙÍòÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èçͼ£¬F1£¬F2ÊÇÍÖÔ²${C_1}£º\frac{x^2}{12}+\frac{y^2}{4}=1$ÓëË«ÇúÏßC2µÄ¹«¹²½¹µã£¬A£¬B·Ö±ðÊÇC1£¬C2ÔÚµÚ¶þ¡¢ËÄÏóÏ޵Ĺ«¹²µã£®ÈôËıßÐÎAF1BF2Ϊ¾ØÐΣ¬ÔòC2µÄÀëÐÄÂÊÊÇ$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªa£¾b£¬ÔòÏÂÁв»µÈʽÖкã³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®lna£¾lnbB£®$\frac{1}{a}£¼\frac{1}{b}$C£®a2£¾abD£®a2+b2£¾2ab

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªx£¬y¡ÊR+£¬ÇÒ$x+\frac{y}{2}=1$£¬Ôò$\frac{1}{x}+\frac{2}{y}$µÄ×îСֵΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÈôÖ±Ïßy=kx+2ºÍÇúÏß$\frac{{x}^{2}}{2}$+y2=1ÓÐÒ»¸ö¹«¹²µã£¬ÔòkµÄֵΪ£¨¡¡¡¡£©
A£®-$\frac{\sqrt{6}}{2}$B£®$\frac{\sqrt{6}}{2}$C£®¡À$\frac{\sqrt{6}}{2}$D£®$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÓëÁ½×ø±êÖá¶¼ÏàÇУ¬ÇÒ¹ýµã£¨2£¬1£©µÄÔ²µÄ·½³ÌΪ£¨x-5£©2+£¨y-5£©2=25»ò£¨x-1£©2+£¨y-1£©2=1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸