精英家教网 > 高中数学 > 题目详情
数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}的连续三项,则数列{bn}的公比为(  )
A.B.4C.2D.
C
设{an}的公差为d,则(a1+2d)2=a1(a1+6d),即a1=2d,所以q====2.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在正项等比数列中,公比的等比中项是
(1)求数列的通项公式;
(2)若,判断数列的前项和是否存在最大值,若存在,求出使最大时的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO2的年排放量约为9.3万吨.
(1)按原计划,“十二五”期间该城市共排放SO2约多少万吨?
(2)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO2的年排放量每年比上一年减少的百分率为p,为使2020年这一年SO2的年排放量控制在6万吨以内,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3·a4=117,a2+a5=22.
(1)求数列{an}的通项公式an.
(2)若数列{bn}是等差数列,且bn=,求非零常数c.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列{an}的前n项和Sn=2n-1,则+++…+等于(  )
A.(2n-1)2B.(2n-1)2
C.4n-1D.(4n-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足a1=1,an=3n-1+an-1(n≥2).
(1)求a2,a3.(2)求通项公式an.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围.
(2)求{an}前n项和Sn最大时n的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列{an}中,是一个与n无关的常数,则该常数的可能值的集合为(  )
A.{1}B.{1,}
C.{}D.{0,,1}

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在数列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),则的值是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案