精英家教网 > 高中数学 > 题目详情

设函数的定义域为D,若存在非零实数使得对于任意,有,且,则称为M上的高调函数. 

现给出下列命题:

① 函数为R上的1高调函数;

② 函数为R上的高调函数;

③ 如果定义域为的函数高调函数,那么实数 的取值范围是

④ 函数上的2高调函数。

其中真命题的个数为

A.0                B.1                C.2                D.3

 

【答案】

D

【解析】

试题分析:首先理解“高调函数”的定义:函数的定义域为D,若存在非零实数使得对于任意,有,且,则称为M上的高调函数.

据此研究四个函数:

对于①,即f(x)=()x。f(x+l)=()x+l,要使f(x+l)≥f(x),需要()x+l≥()x恒成立,只需l≤0;所以①函数为R上的1高调函数;不对;

对于②,f(x+1))=sin2(x+1)≥sin2x=f(x),当l=π时恒成立;所以函数f(x)=sin2x为R上的π高调函数,

所以②对;

对于③,f(x+m)=(x+m)2,f(x)=x2,令(x+m)2≥x2,即2mx+m2≥0在恒成立,

∴m>0且2m(-1)+m2≥0,解得m≥2,故③对;

对于④ 函数,若其为2高调函数,

则由,在恒成立,

恒成立,而此恒成立,所以④对

故正确的命题个数是3个,

故选D。

考点:本题主要考查学生的阅读能力, 常见函数的性质。

点评:新定义问题,具有较强的综合性。关键是阅读理解新定义内容,应用知识分析解决问题,利用数形结合的方法,应用图象解决问题,属中档题

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•北京模拟)定义函数y=f(x):对于任意整数m,当实数x∈(m-
1
2
,m+
1
2
)
时,有f(x)=m.
(Ⅰ)设函数的定义域为D,画出函数f(x)在x∈D∩[0,4]上的图象;
(Ⅱ)若数列an=2+10(
2
5
)n
(n∈N*),记Sn=f(a1)+f(a2)+…+f(an),求Sn
(Ⅲ)若等比数列bn的首项是b1=1,公比为q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市高三(上)数学会考练习试卷(三)(解析版) 题型:解答题

定义函数y=f(x):对于任意整数m,当实数x时,有f(x)=m.
(Ⅰ)设函数的定义域为D,画出函数f(x)在x∈D∩[0,4]上的图象;
(Ⅱ)若数列(n∈N*),记Sn=f(a1)+f(a2)+…+f(an),求Sn
(Ⅲ)若等比数列bn的首项是b1=1,公比为q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题文科数学试卷(解析版) 题型:填空题

设函数的定义域为D,若存在非零数使得对于任意,则称为M上的高调函数。

现给出下列命题:

①函数为R上的1高调函数;

②函数为R上的高调函数

③如果定义域为的函数高调函数,那么实数的取值范围是

其中正确的命题是        。(写出所有正确命题的序号)

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省皖南高三上学期联合测评考试理科数学(解析版) 题型:选择题

设函数的定义域为D,如果对于任意的,存在唯一的,使得成立(其中C为常数),则称函数在D上的约算术均值为C,则下列函数在其定义域上的算术均值可以为2的函数是    (    )

A.   B.   C. D.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年辽宁省高三第六次模拟考试数学文卷 题型:填空题

设函数的定义域为D,若存在非零实数,使得对于都有,则称M上的高调函数. 现给出下列命题:

①函数R上的1高调函数;

②函数R上的高调函数;

③若定义域为的函数上的高调函数,则实数的取值范围是.

其中正确的命题是          .(写出所有正确命题的序号)

 

查看答案和解析>>

同步练习册答案