精英家教网 > 高中数学 > 题目详情
(本小题满分10分)
如图,在四棱锥中,底面ABCD为直角梯形,AB∥CD,∠BAD=90°,PA⊥平面ABCD,AB=1,AD=2,PA=CD=4,求二面角的余弦值.
二面角B-PC-A的余弦值为.
本小题采用向量法求二面角,先求出二面角两个面的法向量,再求法向量的夹角,再根据法向量的夹角与二面角相等或互补来求解.
解:如图建立空间直角坐标系,则A(0,0,0),B(0,1,0),C(-2,4,0),D(-2,0,0),P(0,0,4),易证为面PAC的法向量,则

设面PBC的法向量

所以
所以面PBC的法向量

因为面PAC和面PBC所成的角为锐角,所以二面角B-PC-A的余弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且
(1)证明:无论取何值,总有
(2)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;
(3)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥S—ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设
PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(I)求证:;(Ⅱ)求证:平面MAP⊥平面SAC;
( Ⅲ)求锐二面角M—AB—C的大小的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,已知四棱锥中,底面,四边形是直角梯形,

(1)证明:
(2)在线段上找出一点,使平面
指出点的位置并加以证明;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱柱ABC—A1B1C1中,底面为正三角形,侧棱与底面垂直,D是BC的中点,AA1=AB=1。

(1)  求证:A1C∥平面AB1D;
(2)  求点C到平面AB1D的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

矩形中,⊥面上的点,且⊥面交于点.
(1)求证:
(2)求证://面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

类比平面几何中的定理 “设是三条直线,若,则”,得出如下结论:
①设是空间的三条直线,若,则
②设是两条直线,是平面,若,则
③设是两个平面,是直线,若
④设是三个平面,若,则
其中正确命题的个数是(    )  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2,∠ACB=900,M是AA1的中点,N是BC1的中点.

(1)求证:MN//平面A1B1C1
(2)求二面角B-C1M-C的平面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知平面和直线l,则内至少有一条直线与l(   )
A.平行B.相交C.垂直D.异面

查看答案和解析>>

同步练习册答案