精英家教网 > 高中数学 > 题目详情
已知点A(a,0)(a>4),点B(0,b)(b>4),直线AB与圆x2+y2-4x-4y+3=0相交于C、D两点,且|CD|=2.
(1)求(a-4)(b-4)的值;
(2)求线段AB的中点的轨迹方程;
(3)求△AOM的面积S的最小值.
分析:(1)利用|CD|=2,得圆心到直线AB的距离d=2,从而可得
|2b+2a-ab|
a2+b2
=2
,再进行化简即可;
(2)设M中点,(x,y),则
x=
a
2
y=
b
2
,结合(1),化简可得;
(3)将面积表示为S△AOM=
1
2
a•
b
2
=
1
4
(4a+4b-8)=a+b-2=(a-4)+(b-4)+6
,再利用基本不等式求解.
解答:解:(1)直线AB的方程为
x
a
+
y
b
=1
,其与已知圆相交,且|CD|=2,得圆心到直线AB的距离d=2,即
|2b+2a-ab|
a2+b2
=2
.化简得ab+8-4a-4b=0,故(a-4)(b-4)=8.
(2)设M(x,y),则
x=
a
2
y=
b
2
,由(1)得(2x-4)(2y-4)=8,(x-2)(y-2)=2(x>2,y>2)为所求轨迹方程.--(8分)(x,y范围只写一个也行没写扣1分)
(3)S△AOM=
1
2
a•
b
2
=
1
4
(4a+4b-8)=a+b-2=(a-4)+(b-4)+6
≥2
(a-4)(b-4)
+6=4
2
+6

当且仅当a=b=4+2
2
时面积取最小值6+4
2
点评:本题主要考查了直线与圆的综合问题,考查中点坐标公式及利用基本不等式求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2007•深圳一模)已知点H(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足
HP
PM
=0
PM
=-
3
2
MQ

(Ⅰ)当点P在y轴上移动时,求点M的轨迹C;
(Ⅱ)过定点D(m,0)(m>0)作直线l交轨迹C于A、B两点,E是D点关于坐标原点O的对称点,求证:∠AED=∠BED;
(Ⅲ)在(Ⅱ)中,是否存在垂直于x轴的直线l'被以AD为直径的圆截得的弦长恒为定值?若存在求出l'的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,0),B(-1,0).动点M满足|MA|-|MB|=2,则点M的轨迹方程是(  )
A、y=0(-1≤x≤1)B、y=0(x≥1)C、y=0(x≤-1)D、y=0(|x|≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-2,0),B(2,0),直线AG,BG相交于点G,且它们的斜率之积是-
14

(Ⅰ)求点G的轨迹Ω的方程;
(Ⅱ)圆x2+y2=4上有一个动点P,且P在x轴的上方,点C(1,0),直线PA交(Ⅰ)中的轨迹Ω于D,连接PB,CD.设直线PB,CD的斜率存在且分别为k1,k2,若k1=λk2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a等于(    )

A.                                    B.

C.                                 D.

查看答案和解析>>

同步练习册答案