精英家教网 > 高中数学 > 题目详情
设P是椭圆+=1上一点,M,N分别是两圆:(x+2)2+y2=1和(x-2)2+y2=1上的点,则|PM|+|PN|的最小值、最大值分别为( )
A.4,8
B.2,6
C.6,8
D.8,12
【答案】分析:由题设知椭圆+=1的焦点分别是两圆(x+2)2+y2=1和(x-2)2+y2=1的圆心,由此能求出|PM|+|PN|的最小值、最大值.
解答:解:依题意,椭圆+=1的焦点分别是两圆(x+2)2+y2=1和(x-2)2+y2=1的圆心,
所以(|PM|+|PN|)max=2×3+2=8,
(|PM|+|PN|)min=2×3-2=4,
故选A.
点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江门一模)已知直线x-
3
y+
3
=0经过椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个顶点B和一个焦点F.
(1)求椭圆的离心率;
(2)设P是椭圆C上动点,求||PF|-|PB||的取值范围,并求||PF|-|PB||取最小值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•甘肃一模)设椭圆M:
x2
a2
+
y2
2
=1
(a>
2
)
的右焦点为F1,直线l:x=
a2
a2-2
与x轴交于点A,若
OF1
+2
AF1
=0
(其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青岛一模)设椭圆M:
x2
a2
+
y2
8
=1(a>2
2
)
的右焦点为F1,直线l:x=
a2
a2-8
与x轴交于点A,若
OF1
+2
AF1
=
0
(其中O为坐标原点).
(Ⅰ)求椭圆M的方程;
(Ⅱ)设P是椭圆M上的任一点,EF为圆N:x2+(y-2)2=1的任一条直径,求
PE
PF
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线y2=8x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=2
6

(Ⅰ)求椭圆E的方程;
(Ⅱ)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E、F为直径的两个端点),求
PE
PF
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛一模)已知点M在椭圆D:
x2
a2
+
y2
b2
=1(a>b>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点,若圆M与y轴相交于A,B两点,且△ABM是边长为
2
6
3
的正三角形.
(Ⅰ)求椭圆D的方程;
(Ⅱ)设P是椭圆D上的一点,过点P的直线l交x轴于点F(-1,0),交y轴于点Q,若
QP
=2
PF
,求直线l的斜率;
(Ⅲ)过点G(0,-2)作直线GK与椭圆N:
3x2
a2
+
4y2
b2
=1
左半部分交于H,K两点,又过椭圆N的右焦点F1做平行于HK的直线交椭圆N于R,S两点,试判断满足|GH|•|GK|=3|RF1|•|F1S|的直线GK是否存在?请说明理由.

查看答案和解析>>

同步练习册答案