精英家教网 > 高中数学 > 题目详情
14.函数f(x)=x+$\frac{2}{x}$.
(1)判断f(x)的奇偶性,并证明你的结论.
(2)用函数单调性的定义证明函数f(x)在[$\sqrt{2}$,+∞)内是增函数.

分析 (1)先确定函数的定义域,再根据奇偶性的定义作出判断;
(2)直接用定义证明函数的单调性.

解答 解:(1)f(x)的定义域为(-∞,0)∪(0,+∞),
∵f(-x)=-x+$\frac{2}{-x}$=-(x+$\frac{2}{x}$)=-f(x),
∴f(x)是奇函数;
(2)任取x1,x2∈[$\sqrt{2}$,+∞),且x1<x2
则f(x1)-f(x2)=x1+$\frac{2}{{x}_{1}}$-(x2+$\frac{2}{{x}_{2}}$)
=(x1-x2)+($\frac{2}{{x}_{1}}$-$\frac{2}{{x}_{2}}$)
=(x1-x2)($\frac{{x}_{1}{x}_{2}-2}{{x}_{1}{x}_{2}}$),
因为$\sqrt{2}$≤x1<x2,所以x1-x2<0且x1x2>2,
因此,f(x1)-f(x2)<0,
即f(x1)<f(x2),
故f(x)在[$\sqrt{2}$,+∞)内是增函数.

点评 本题主要考查了函数奇偶性的判断和单调性的证明,考查了奇偶性的定义和单调性的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)计算:${0.027^{-\frac{1}{3}}}-{(-\frac{1}{7})^{-2}}+{(2\frac{7}{9})^{\frac{1}{2}}}-{(π-1)^0}+{100^{\frac{1}{2}lg9+lg2}}$;
(2)已知log23=a,log37=b,试用a,b表示log1456.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设全集U=R,集合A={x|y=$ln\frac{1+x}{1-x}$},B={y|y=3-x},则A∩(∁UB)=(  )
A.[-1,0]B.(-1,0)C.(-1,0]D.[-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设△ABC的内角A、B、C所对的边长分别为a、b、c,且(3b-c)cosA=acosC.
(1)求cosA的值;
(2)若△ABC的面积S=2$\sqrt{2}$,求△ABC的周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.不等式0.3${\;}^{{x}^{2}+x+1}$>0.3${\;}^{-2{x}^{2}+5x}$的解集为($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知公差不为零的等差数列{an}的前3项和S3=9,且a1、a2、a5成等比数列.求数列{an}的通项公式及前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知lg339=5.826,求lg3.39之值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(sinx+cosx)2+m,x∈R.
(1)求f(x)的最小正周期;
(2)若f(x)的最大值为3,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知平面直角坐标系xOy中的两条直线l1:x+2y=0,l2:x-y+3=0的交点为A,直线l过点A且与直线OA垂直,求直线l的方程.

查看答案和解析>>

同步练习册答案