精英家教网 > 高中数学 > 题目详情

(2013·天津高考)已知首项为的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.
(1)求数列{an}的通项公式.
(2)证明Sn+(n∈N*).

(1)an= (-1)n-1·.     (2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知均为给定的大于1的自然数.设集合,集合
(1)当时,用列举法表示集合
(2)设,其中证明:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列满足:,公比,数列的前项和为,且.
(1)求数列和数列的通项
(2)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{}的前n项和为,且.
⑴证明数列{}为等比数列
⑵求{}的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和为满足:
(1)求证:数列是等比数列;
(2)令,对任意,是否存在正整数m,使都成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知成等比数列, 公比为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的各项均为正数的等比数列,且a1a2=2,a3a4=32,
(1)求数列{an}的通项公式;
(2)设数列{bn}满足(n∈N*),求设数列{bn}的前n项和T­n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设Sn为数列{an}的前n项和,已知a1≠0,2an-a1=S1·Sn,n∈N*.
(1)求a1,a2,并求数列{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

等比数列{}的公比为q,其前n项和的积为Tn,并且满足下面条件给出下列结论:①0<q<1;②a99·a100—1<0;③T100的值是Tn中最大的;④使Tn>1成立的最大自然数n等于198.其中正确的结论是:
                     (写出所有正确命题的序号)。

查看答案和解析>>

同步练习册答案