精英家教网 > 高中数学 > 题目详情

已知数列的前n项和为满足:
(1)求证:数列是等比数列;
(2)令,对任意,是否存在正整数m,使都成立?若存在,求出m的值;若不存在,请说明理由.

(1)详见解析;(2)m的值为1,2,3.

解析试题分析:(1)首先由题设找到间的关系,然后证明是一个常数.(2)首先求得
,由此得,用裂项法可求得和.由对任意都成立,得,即对任意都成立,所以 小于等于的最小值.
(1)当时,,解得, 1分
时,由,  2分
两式相减,得,即), 3分
,故数列是以为首项,公比为3的等比数列. 4分
(2)由(1)知
, 6分
所以, 7分
,  8分
对任意都成立,得, 10分
对任意都成立,又
所以m的值为1,2,3.                    .12分
考点:1、等比数列;2、裂项法求和;3、不等关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.
(1)求an,bn; (2)求数列{an·bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,且满足
(1)求数列的通项公式;
(2)求证: 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2011•重庆)设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).
(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3
(Ⅱ)求证:对k≥3有0≤ak

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013·天津高考)已知首项为的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.
(1)求数列{an}的通项公式.
(2)证明Sn+(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•湖北)已知等比数列{an}满足:|a2﹣a3|=10,a1a2a3=125.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等比数列
(1)求数列{an}的通项公式;
(2)求数列{an}的前5项的和
(3)若,求Tn的最大值及此时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数满足:集合中至少存在三个不同的数构成等比数列,则称函数是等比源函数.
(1)判断下列函数:①;②中,哪些是等比源函数?(不需证明)
(2)证明:函数是等比源函数;
(3)判断函数是否为等比源函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:若数列{An}满足An+1=,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是 “平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项公式及Tn关于n的表达式.

查看答案和解析>>

同步练习册答案