已知数列的前n项和为满足:.
(1)求证:数列是等比数列;
(2)令,对任意,是否存在正整数m,使都成立?若存在,求出m的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:解答题
已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.
(1)求an,bn; (2)求数列{an·bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)(2011•重庆)设实数数列{an}的前n项和Sn满足Sn+1=an+1Sn(n∈N*).
(Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3.
(Ⅱ)求证:对k≥3有0≤ak≤.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013·天津高考)已知首项为的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.
(1)求数列{an}的通项公式.
(2)证明Sn+≤(n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013•湖北)已知等比数列{an}满足:|a2﹣a3|=10,a1a2a3=125.
(1)求数列{an}的通项公式;
(2)是否存在正整数m,使得?若存在,求m的最小值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若函数满足:集合中至少存在三个不同的数构成等比数列,则称函数是等比源函数.
(1)判断下列函数:①;②中,哪些是等比源函数?(不需证明)
(2)证明:函数是等比源函数;
(3)判断函数是否为等比源函数,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义:若数列{An}满足An+1=,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是 “平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项公式及Tn关于n的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com