精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*.
(1)求an,bn; (2)求数列{an·bn}的前n项和Tn.

(1)an=4n-1,bn=2n-1(n∈N*);(2)Tn=5+(4n-5)×2n.

解析试题分析:(1)本小题中已知Sn是数列{an}的前n项和,且Sn的表达式已知,当n≥2时,an=Sn-Sn-1,而当n=1时,a1=S1且检查是否符合前式,在an求出之后利用an=4log2bn+3求得bn;(2)可知an·bn的表达式是等差乘以等比形式,求这类数列的前n项和Tn,只需用错位相减法可完成求和,即若等比数列的公比为q,则由Tn -qTn进行错位相减,整理出Tn即可.
试题解析:(1)由Sn=2n2+n,可得:当n≥2时,an=Sn-Sn-1=(2n2+n)-[2(n-1)2+(n-1)]="4n-1," 当n=1时,a1=3符合上式,所以an=4n-1(n∈N*).由an=4log2bn+3,可得4n-1=4log2bn+3, 解得bn=2n-1(n∈N*).
(2)anbn=(4n-1)·2n-1, ∴Tn=3+7×21+11×22+15×23+…+(4n-1)×2n-1,                  ①
2Tn=3×21+7×22+11×23+15×24+…+(4n-1)×2n,             ②
①-②可得:
-Tn=3+4[21+22+23+24+…+2n-1]-(4n-1)×2n=3+4×-(4n-1)×2n=-5+(5-4n)×2n,
∴Tn=5+(4n-5)×2n.
考点:的关系:,错位相减法求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

设数列的前n项和为,若数列是首项和公比都是3的等比数列,则的通项公式_____

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

各项均为正数的等比数列的前n项和为Sn,若S10=2,S30=14,则S20等于    

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为为等比数列,且 
(1)求数列的通项公式;
(2)设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列中,分别为△ABC的三个内角A,B,C的对边,且.
(1)求数列的公比
(2)设集合,且,求数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给定数列.对,该数列前项的最大值记为,后的最小值记为,.
(1)设数列为3,4,7,1,写出,,的值;
(2)设()是公比大于1的等比数列,且.证明:,,…,是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和为满足:
(1)求证:数列是等比数列;
(2)令,对任意,是否存在正整数m,使都成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设正项等比数列{}的前n项和为,且,   则数列{}的公比等于           

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

等比数列{}的公比为q,其前n项和的积为Tn,并且满足下面条件给出下列结论:①0<q<1;②a99·a100—1<0;③T100的值是Tn中最大的;④使Tn>1成立的最大自然数n等于198.其中正确的结论是:
                     (写出所有正确命题的序号)。

查看答案和解析>>

同步练习册答案