精英家教网 > 高中数学 > 题目详情
3.在同一时间段里,有甲、乙两个气象站相互独立地对天气进行预报,若甲气象站对天气预报的准确率为0.8,乙气象站对天气预报的准确率为0.95,在同一时间段里,求:
(1)甲、乙两个气象站对天气预报都准确的概率;
(2)至少有一个气象站对天气预报准确的概率.

分析 (1)由题意知甲乙两个天气预报站相互独立的对天气进行预测,设A“甲天气预报站预报准确”,B“乙天气预报站预报准确”根据相互独立事件的概率公式得到结果.
(2)至少有一个预报站预报准确的对立事件是两个预报站预报都不准确,两个预报站预报的都不准确是相互独立事件同时发生的概率,根据这两种事件的概率公式得到结果

解答 解:记“甲气象站对天气预报准确”为事件A,“乙气象站对天气预报准确”为事件B,
(1)甲、乙两个气象站对天气预报都准确的概率为P(A•B)=P(A)•P(B)=0.8×0.95=0.76,
(2)至少有一个气象站对天气预报准确的概率为$1-P(\overline A)•P(\overline B)=1-(1-0.8)(1-0.95)=0.99$,
答:(1)甲、乙两个气象站对天气预报都准确的概率为0.76.
(2)至少有一个气象站对天气预报准确的概率为0.99.

点评 考查运用概率知识解决实际问题的能力,相互独立事件是指,两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.△ABC的三内角A,B,C的对边分别为a,b,c,已知:a,b,c成等比数列  
(1)求角B的取值范围;
(2)是否存在实数m,使得不等式(x+3+sin2B)2+[x+$\sqrt{2}$msin(B+$\frac{π}{4}$)]2≥$\frac{1}{8}$对任意的实数x及满足已知条件的所有角B都成立?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}满足直线:x+ny+2=0和直线:3x+any+3=0平行,数列{bn}的前n项和记为Sn,其中bn=2an,若$\frac{{{S_n}-m{b_n}}}{{{S_n}-m{b_{n+1}}}}<\frac{1}{16}$,则满足条件的正整数对(m,n)=(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了研究某种细菌随时间x变化,繁殖的个数,收集数据如下:
天数x/天 1 2 34 56
繁殖个数y/个 6 12 25 49  95190
(1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图,根据散点图判断:y=a+bx与y=${C_1}{e^{{C_2}x}}$哪一个作为繁殖的个数y关于时间x变化的回归方程类型为最佳?(给出判断即可,不必说明理由)
$\overline x$$\overline y$$\overline z$$\sum_{i=1}^6{({x_i}-\overline x}{)^2}$$\sum_{i=1}^6{({x_i}-\overline x})({y_i}-\overline y)$$\sum_{i=1}^6{({x_i}-\overline x})({z_i}-\overline z)$
3.562833.5317.5596.50512.04
其中zi=lnyi;$\overline z=\frac{1}{6}\sum_{i=1}^6{z_i}$
(2)根据(1)的判断最佳结果及表中的数据,建立y关于x 的回归方程.
参考公式:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$$a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过点P(2,2)作圆x2+y2=4的切线,则切线方程是y=2或x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过直线x+y=0上一点P作圆(x+1)2+(y-5)2=2的两条切线l1,l2,A,B为切点,当直线l1,l2关于直线y=-x对称时,∠APB=(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=2sin($\frac{π}{3}$-x)-cos($\frac{π}{6}$+x)(x∈R)最小值为(  )
A.-3B.-2C.-1D.-$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.有以下5个命题:
①若P(a,b),Q(c,d)是直线y=kx+m上两个不同的点,则|PQ|可以表示为|c-a|$\sqrt{1+{k}^{2}}$;
②若|$\overrightarrow{a}$|=1.|$\overrightarrow{b}$|=$\sqrt{2}$,且($\overrightarrow{a}+\overrightarrow{b}$)⊥$\overrightarrow{a}$,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为45°;
③三角形的三边分别是4,5,6,则该三角形的最大内角是最小内角的两倍;
④在平面直角坐标系中所有直线都有倾斜角,但不是所有直线都有斜率,且倾斜角越大,则斜率越大;
⑤若三角形ABC的重心为P,则$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0}$.
其中正确的命题是①③⑤.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.袋中有红、黄、绿色球各一个,每次任取一个,有放回地抽取三次,球的颜色不全相同的概率是$\frac{8}{9}$.

查看答案和解析>>

同步练习册答案