精英家教网 > 高中数学 > 题目详情
给定下列四个命题:
①“若a>1且b>1,则a+b>2”的否命题为真命题;
②命题“p∨q为真”是命题“p∧q为真”的必要不充分条件;
③若loga
2
3
<1,则a的取值范围为a>1或0<a<
2
3

④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为
π
4

其中为假命题的是
 
 (填上所有正确命题的序号).
考点:命题的真假判断与应用
专题:简易逻辑
分析:①写出原命题的否命题后判断真假,从而判断命题①;
②由复合命题的真值表判断p、q的真假,然后看“p∨q”与“p∧q”相互推出情况;
③直接求解对数不等式判断命题③的真假;
④由几何概型可知,满足x2+y2≥1的概率是圆x2+y2=1外、边长为2的正方形内的图形的面积与正方形的面积比.求出概率加以判断.
解答: 解:对于①,“若a>1且b>1,则a+b>2”的否命题为“若a≤1或b≤1,则a+b≤2”,为假命题;
对于②,命题“p∨q为真”,则p或q中至少一个为真,命题“p∧q不一定为真”;
命题“p∧q为真”,则p、q均为真,“p∨q为真”.
∴命题“p∨q为真”是命题“p∧q为真”的必要不充分条件,命题②是真命题;
对于③,由loga
2
3
<1,当a>1时不等式成立,
当0<a<1时,loga
2
3
<1?
0<a<1
a<
2
3
,即0<a<
2
3

∴a>1或0<a<
2
3
.命题③为真;
对于④,如图,

若实数x,y∈[-1,1],则满足x2+y2≥1的概率为
4-π
4
=1-
π
4

命题④错误.
∴假命题是①④.
故答案为:①④.
点评:本题考查命题的真假判断与应用,考查了对数不等式的解法,训练了几何概型概率的求法,关键是注意测度比为面积比,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点,焦点在坐标轴上的双曲线C经过A(-7,5)、B(-1,-1)两点.
(1)求双曲线C的方程;
(2)设直线l:y=x+m交双曲线C于M、N两点,且线段MN被圆E:x2+y2-12x+n=0(n∈R)三等分,求实数m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C1的焦点F与椭圆C2:x2+
4y2
3
=1的右焦点重合,抛物线的顶点在坐标原点.
(Ⅰ)求这条抛物线C1方程;
(Ⅱ)设圆M过A(1,0),且圆心M在C1的轨迹上,BD是圆M在y轴的截得的弦,当M过去时弦长BD是否为定值?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若二次函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,现有下列结论:
①方程f[f(x)]=x一定没有实数根;
②若a>0,则不等式f[f(x)]>x对一切实数x都成立;
③若a<0,则必存在实数x0,使f[f(x0)]>x0
④函数g(x)=ax2-bx+c(a≠0)的图象与直线y=-x一定没有交点,
其中正确的结论是
 
(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
y≥0
y-x≤0
x+y-2≤0
,则点(x,y)到圆(x+1)2+(y-10)2=4上的点的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2,3,4,5},从A的非空子集中任取一个,该集合中所有元素之和为奇数的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

要将两种大小不同的钢板截成A,B,C三种规格,每张钢板可同时截得三种规格的小钢板的块数如表所示:
规格类型
钢板类型
A B C
第一 2 1 1
第二 1 2 3
今需要A,B,C三种规格的成品分别是15,18,27块,至少需要这两种钢板共是
 
张.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的算法流程图中,最后一个输出的数是(  )
A、
3
2
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的点P到左右两焦点F1,F2的距离之和为2
2
,离心率为
2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点F2的直线l交椭圆于A、B两点,若y轴上一点M(0,
3
7
)
满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

同步练习册答案